【滤波跟踪】基于matlab卡尔曼滤波kalman三维机动目标跟踪【含Matlab源码 3608期】_机动目标跟踪 卡尔曼滤波器-程序员宅基地

技术标签: matlab  Matlab信号处理 (进阶版)  

博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
个人主页:海神之光
代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

一、卡尔曼滤波kalman三维机动目标跟踪简介

卡尔曼滤波是一种用于处理具有噪声的动态系统的数学方法。它最初是为了跟踪飞机、导弹和航天器的位置和速度而开发的。卡尔曼滤波在轨迹跟踪、控制系统和机器人导航等领域得到了广泛应用。本文将介绍基于卡尔曼滤波的轨迹跟踪的原理、实现步骤和应用。

1 卡尔曼滤波简介
卡尔曼滤波是一种用于估计线性动态系统状态的数学方法。它基于贝叶斯定理,通过对系统状态的预测和测量结果的更新来估计系统状态。卡尔曼滤波的核心思想是利用先验信息和后验信息来优化系统状态的估计。先验信息是指系统状态的先前估计,后验信息是指基于新的测量结果更新后的估计。
卡尔曼滤波将系统的状态表示为一个向量,包含系统的位置、速度和加速度等信息。这个向量被称为状态向量。卡尔曼滤波的主要步骤包括预测和更新:
预测:根据系统的动态模型和先前的状态估计,预测系统的下一个状态。预测的过程包括两个步骤:状态预测和协方差预测。状态预测是利用系统的动态模型和先前的状态估计来预测系统的下一个状态。协方差预测是利用状态预测和系统的噪声模型来预测系统状态的不确定性。
更新:利用新的测量结果来更新预测的状态估计。更新的过程包括两个步骤:计算卡尔曼增益和更新状态估计。卡尔曼增益是利用协方差预测和测量噪声模型来计算的,它表示测量结果对状态估计的权重。更新状态估计是利用卡尔曼增益和测量结果来更新先前的状态估计。
卡尔曼滤波的优点是能够处理具有噪声的测量结果,并且能够利用系统的动态模型进行状态估计。它的缺点是需要对系统的动态模型和测量噪声模型进行准确的建模,并且对于非线性系统和非高斯噪声模型,需要使用扩展卡尔曼滤波或无迹卡尔曼滤波等方法进行处理。

2 基于卡尔曼滤波的轨迹跟踪
基于卡尔曼滤波的轨迹跟踪是一种利用卡尔曼滤波进行目标位置估计的方法。它将目标的运动模型表示为一组线性方程,利用卡尔曼滤波对目标位置进行估计和预测。基于卡尔曼滤波的轨迹跟踪的应用非常广泛,包括自动驾驶、无人机导航、机器人视觉导航等领域。
在轨迹跟踪中,需要估计目标的位置、速度和加速度等状态量。然而,由于目标的运动不确定性和测量噪声的存在,目标的真实状态很难被准确地测量。因此,需要利用卡尔曼滤波来对目标状态进行估计和预测。

轨迹跟踪的算法流程
基于卡尔曼滤波的轨迹跟踪主要包括以下步骤:
(1)初始化:确定目标的初始位置和速度,并建立状态向量和协方差矩阵。
(2)预测:利用目标的运动模型和先前的状态估计,预测目标的下一个状态。
(3)测量:利用传感器测量目标的位置。
(4)更新:利用卡尔曼滤波的公式,将测量结果与预测结果结合,得到更新后的状态估计和协方差矩阵。
(5)重复步骤(2)至(4)以实现连续的轨迹跟踪。
具体而言,轨迹跟踪的算法流程如下:

(1)初始化
在轨迹跟踪开始时,需要确定目标的初始位置和速度,并建立状态向量和协方差矩阵。状态向量通常包含目标的位置、速度和加速度等信息,而协方差矩阵用于表示状态估计的不确定性。
(2)预测:
利用目标的运动模型和先前的状态估计,预测目标的下一个状态。目标的运动模型可以通过目标的历史运动数据来确定,通常假设目标的运动是匀加速运动或匀速运动。假设目标在时刻 t 的状态向量为 x(t),则可以利用以下公式进行预测:
x ( t + 1 ) = F ⋅ x ( t ) + B ⋅ u ( t ) + w ( t ) x(t+1)=F\cdot x(t)+B\cdot u(t)+w(t) x(t+1)=Fx(t)+Bu(t)+w(t)
其中,F是状态转移矩阵,B是控制矩阵,u(t)是控制向量,w(t)是过程噪声,用于表示运动模型的不确定性。
协方差矩阵的预测可以通过以下公式计算:
P ( t + 1 ) = F ⋅ P ( t ) ⋅ F T + Q P(t+1)=F\cdot P(t)\cdot F^T+Q P(t+1)=FP(t)FT+Q
其中,P(t)是先前状态估计的协方差矩阵,Q是过程噪声的协方差矩阵,用于表示状态估计的不确定性。
(3)测量:
利用传感器测量目标的位置,得到测量向量z(t)。测量向量通常包含目标的位置信息,但也可能包含其他信息,如目标的大小和形状等。
(4)更新:
利用卡尔曼滤波的公式,将测量结果与预测结果结合,得到更新后的状态估计和协方差矩阵。

二、部分源代码

function main()
%产生观测数据
total=3*60;%总的时间长度
global T;%采样周期
T=1;
N=total/T;%数据长度
a=20;
var_rx=100;
var_ry=100;

X=[];%观测数据
X_ideal=[];%理想数据

for i=1:N
[rx,ry]=track(iT,20);
X_ideal=[X_ideal,[rx;ry]];
rx=rx+var_rx
randn(1,1);
ry=ry+var_ry*randn(1,1);
X=[X,[rx;ry]];
end

X_filter=zeros(size(X));%滤波后数据
X_mean=X_filter;%蒙特卡洛平均数据
Error_var=zeros(size(X));
M=10;%蒙特卡洛仿真次数

for iCount=1:M
X_filter=Trace(X);
X_mean=X_mean+X_filter;
Error_var=Error_var+(X_ideal-X_filter).^2;
end

X_mean=X_mean/M;
Error_var=Error_var/M;
Error_mean=X_ideal-X_mean;%误差均值
Error_var=sqrt(Error_var-Error_mean.^2);

plot(X_ideal(1,:),X_ideal(2,:),X(1,:),X(2,:),X_mean(1,:),X_mean(2,:));
axis equal;
legend(‘理想轨迹’,‘观测轨迹’,‘滤波轨迹’);

figure;
k=1:N;
subplot(2,1,1),plot(k,Error_mean(1,:));title(‘x方向误差均值’);xlabel(‘采样次数’),ylabel(‘误差均值(米)’);
subplot(2,1,2),plot(k,Error_var(1,:));title(‘x方向误差标准值’);xlabel(‘采样次数’),ylabel(‘误差标准值(米)’);

figure;
subplot(2,1,1),plot(k,Error_mean(2,:));title(‘y方向误差均值’);xlabel(‘采样次数’),ylabel(‘误差均值(米)’);
subplot(2,1,2),plot(k,Error_var(2,:));title(‘y方向误差标准值’);xlabel(‘采样次数’),ylabel(‘误差标准值(米)’);

%@subfunction
%理想航迹方程
function [x,y]=track(t,a)
%parameter:
% t:时间
% x:横轴位移
% y:纵轴位移
% a:转弯处加速度
% r:初始位置
% v:初始速度

r=[-20000,0]';
v=300;
w=a/v;%角速度
t1=-r(1)/v;
t2=t1+pi/w;
D=v^2/a2;%圆周运动直径
if t<=0
x=-20000,y=0;
elseif t>0&&t<=t1
x=r(1)+v
t;
y=r(2);
elseif t>t1&&t<=t2
angel=(t-t1)w;
x=D/2
sin(angel);
y=-D*(sin(angel/2))^2;
else
x=-v*(t-t2);
y=-D;
end

function R=Trace(X)
%@project:飞行器跟踪模拟
%@author:fantasy
%@date:2006.5.10
%@parameter:
% X:观测数据
% R:输出坐标

%观测时间间隔
global T;

%观测矩阵
H=[1,0,0,0,0;…
0,1,0,0,0];

%位移测量误差
var_rx=100;
var_ry=100;
var_rx2=var_rx^2;
var_ry2=var_ry^2;

%观测噪声协方差矩阵
C=[var_rx2,0;…
0,var_ry2];

%驱动噪声协方差矩阵
var_v=30;
var_a=5;
var_v2=var_v^2;
var_a2=var_a^2;

Q=zeros(5,5);
Q(4,4)=var_v2;
Q(5,5)=var_a2;

%初始状态
s0=[-10000,2000,0,300,0]';

%Kalman滤波跟踪
N=size(X,2);%观测数据长度
s=s0;
a=@traverse;
M=Q;
Xplus=[];%修正后的航迹
for icurrent=1:N
[s,M]=Karlman(s,M,X(:,icurrent),a,Q,C,H);
Xplus=[Xplus;(s(1:2))'];
end

%可视化数据
% plot(X(1,:),X(2,:),‘r.’);
% axis(‘equal’);
% hold on;
% plot(Xplus(:,1),Xplus(:,2));

R=Xplus’;

function s_estimate=traverse(s)
%状态方程
%s=[rx,ry,theta,v,a]
global T;
s_estimate=zeros(5,1);
s_estimate(1)=s(1)+s(4)*cos(s(3))*T;
s_estimate(2)=s(2)-s(4)*sin(s(3))*T;
s_estimate(3)=s(3)+(s(5)/s(4))*T;
s_estimate(4)=s(4);
s_estimate(5)=s(5);

function [s,M]=Karlman(s_forward,M_forward,X,a,Q,C,H)
%卡尔曼滤波
%@author:fantasy
%@date:2006.5.15
%参数说明
% X–观测数据矢量
% A–状态矩阵

% Q–驱动噪声协方差
% C–观测噪声协方差
% h–观测方程句柄
% s–输出数据矢量
% s_foward–前次输出矢量
% M–前次预测矩阵
global T;
%预测
s=feval(a,s_forward);

%状态转换矩阵

% A=[1,0,-s(4)/2*sin(s(3)/2)*T,cos(s(3)/2)T,0;…
% 0,1,-s(4)/2
cos(s(3)/2)*T,-sin(s(3)/2)*T,0;…
% 0,0,1,-s(5)*T/(s(4))^2,T/s(4);…
% 0,0,0,1,0;…
% 0,0,0,0,1];

A=[1,0,-s(4)*sin(s(3))*T,cos(s(3))*T,0;…
0,1,-s(4)*cos(s(3))*T,-sin(s(3))*T,0;…
0,0,1,-s(5)*T/(s(4))^2,T/s(4);…
0,0,0,1,0;…
0,0,0,0,1];

%最小预测MSE矩阵
M=M_forward;
M=AMA’+Q;

%卡尔曼增益矩阵
K=MH’inv(C+HMH’);

%修正
s=s+K*(X-H*s);

%最小MSE矩阵
M=M-KHM;

三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]宁倩慧,张艳兵,刘莉,陆真,郭冰陶.扩展卡尔曼滤波的目标跟踪优化算法[J].探测与控制学报. 2016,38(01)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/TIQCmatlab/article/details/134938833

智能推荐

攻防世界_难度8_happy_puzzle_攻防世界困难模式攻略图文-程序员宅基地

文章浏览阅读645次。这个肯定是末尾的IDAT了,因为IDAT必须要满了才会开始一下个IDAT,这个明显就是末尾的IDAT了。,对应下面的create_head()代码。,对应下面的create_tail()代码。不要考虑爆破,我已经试了一下,太多情况了。题目来源:UNCTF。_攻防世界困难模式攻略图文

达梦数据库的导出(备份)、导入_达梦数据库导入导出-程序员宅基地

文章浏览阅读2.9k次,点赞3次,收藏10次。偶尔会用到,记录、分享。1. 数据库导出1.1 切换到dmdba用户su - dmdba1.2 进入达梦数据库安装路径的bin目录,执行导库操作  导出语句:./dexp cwy_init/[email protected]:5236 file=cwy_init.dmp log=cwy_init_exp.log 注释:   cwy_init/init_123..._达梦数据库导入导出

js引入kindeditor富文本编辑器的使用_kindeditor.js-程序员宅基地

文章浏览阅读1.9k次。1. 在官网上下载KindEditor文件,可以删掉不需要要到的jsp,asp,asp.net和php文件夹。接着把文件夹放到项目文件目录下。2. 修改html文件,在页面引入js文件:<script type="text/javascript" src="./kindeditor/kindeditor-all.js"></script><script type="text/javascript" src="./kindeditor/lang/zh-CN.js"_kindeditor.js

STM32学习过程记录11——基于STM32G431CBU6硬件SPI+DMA的高效WS2812B控制方法-程序员宅基地

文章浏览阅读2.3k次,点赞6次,收藏14次。SPI的详情简介不必赘述。假设我们通过SPI发送0xAA,我们的数据线就会变为10101010,通过修改不同的内容,即可修改SPI中0和1的持续时间。比如0xF0即为前半周期为高电平,后半周期为低电平的状态。在SPI的通信模式中,CPHA配置会影响该实验,下图展示了不同采样位置的SPI时序图[1]。CPOL = 0,CPHA = 1:CLK空闲状态 = 低电平,数据在下降沿采样,并在上升沿移出CPOL = 0,CPHA = 0:CLK空闲状态 = 低电平,数据在上升沿采样,并在下降沿移出。_stm32g431cbu6

计算机网络-数据链路层_接收方收到链路层数据后,使用crc检验后,余数为0,说明链路层的传输时可靠传输-程序员宅基地

文章浏览阅读1.2k次,点赞2次,收藏8次。数据链路层习题自测问题1.数据链路(即逻辑链路)与链路(即物理链路)有何区别?“电路接通了”与”数据链路接通了”的区别何在?2.数据链路层中的链路控制包括哪些功能?试讨论数据链路层做成可靠的链路层有哪些优点和缺点。3.网络适配器的作用是什么?网络适配器工作在哪一层?4.数据链路层的三个基本问题(帧定界、透明传输和差错检测)为什么都必须加以解决?5.如果在数据链路层不进行帧定界,会发生什么问题?6.PPP协议的主要特点是什么?为什么PPP不使用帧的编号?PPP适用于什么情况?为什么PPP协议不_接收方收到链路层数据后,使用crc检验后,余数为0,说明链路层的传输时可靠传输

软件测试工程师移民加拿大_无证移民,未受过软件工程师的教育(第1部分)-程序员宅基地

文章浏览阅读587次。软件测试工程师移民加拿大 无证移民,未受过软件工程师的教育(第1部分) (Undocumented Immigrant With No Education to Software Engineer(Part 1))Before I start, I want you to please bear with me on the way I write, I have very little gen...

随便推点

Thinkpad X250 secure boot failed 启动失败问题解决_安装完系统提示secureboot failure-程序员宅基地

文章浏览阅读304次。Thinkpad X250笔记本电脑,装的是FreeBSD,进入BIOS修改虚拟化配置(其后可能是误设置了安全开机),保存退出后系统无法启动,显示:secure boot failed ,把自己惊出一身冷汗,因为这台笔记本刚好还没开始做备份.....根据错误提示,到bios里面去找相关配置,在Security里面找到了Secure Boot选项,发现果然被设置为Enabled,将其修改为Disabled ,再开机,终于正常启动了。_安装完系统提示secureboot failure

C++如何做字符串分割(5种方法)_c++ 字符串分割-程序员宅基地

文章浏览阅读10w+次,点赞93次,收藏352次。1、用strtok函数进行字符串分割原型: char *strtok(char *str, const char *delim);功能:分解字符串为一组字符串。参数说明:str为要分解的字符串,delim为分隔符字符串。返回值:从str开头开始的一个个被分割的串。当没有被分割的串时则返回NULL。其它:strtok函数线程不安全,可以使用strtok_r替代。示例://借助strtok实现split#include <string.h>#include <stdio.h&_c++ 字符串分割

2013第四届蓝桥杯 C/C++本科A组 真题答案解析_2013年第四届c a组蓝桥杯省赛真题解答-程序员宅基地

文章浏览阅读2.3k次。1 .高斯日记 大数学家高斯有个好习惯:无论如何都要记日记。他的日记有个与众不同的地方,他从不注明年月日,而是用一个整数代替,比如:4210后来人们知道,那个整数就是日期,它表示那一天是高斯出生后的第几天。这或许也是个好习惯,它时时刻刻提醒着主人:日子又过去一天,还有多少时光可以用于浪费呢?高斯出生于:1777年4月30日。在高斯发现的一个重要定理的日记_2013年第四届c a组蓝桥杯省赛真题解答

基于供需算法优化的核极限学习机(KELM)分类算法-程序员宅基地

文章浏览阅读851次,点赞17次,收藏22次。摘要:本文利用供需算法对核极限学习机(KELM)进行优化,并用于分类。

metasploitable2渗透测试_metasploitable2怎么进入-程序员宅基地

文章浏览阅读1.1k次。一、系统弱密码登录1、在kali上执行命令行telnet 192.168.26.1292、Login和password都输入msfadmin3、登录成功,进入系统4、测试如下:二、MySQL弱密码登录:1、在kali上执行mysql –h 192.168.26.129 –u root2、登录成功,进入MySQL系统3、测试效果:三、PostgreSQL弱密码登录1、在Kali上执行psql -h 192.168.26.129 –U post..._metasploitable2怎么进入

Python学习之路:从入门到精通的指南_python人工智能开发从入门到精通pdf-程序员宅基地

文章浏览阅读257次。本文将为初学者提供Python学习的详细指南,从Python的历史、基础语法和数据类型到面向对象编程、模块和库的使用。通过本文,您将能够掌握Python编程的核心概念,为今后的编程学习和实践打下坚实基础。_python人工智能开发从入门到精通pdf

推荐文章

热门文章

相关标签