OpenSSL之ssl库_ssl_read_ex-程序员宅基地

技术标签: openssl  

ssl

OpenSSL的SSL/TLS库,实现了SSL(Secur)/TLS(Transport Layer Security)/DTLS(Datagram Transport Layer Security)协议的多个版本。

SSL_CTX对象包含证书、算法等信息,用于建立TLS/SSL连接。

网络连接建立后可以赋值给SSL对象,然后可以使用SSL对象完成握手操作(SSL_accept或SSL_connect或SSL_do_handshake),握手完成后就可以读写了。关闭网络连接前先调用SSL_shutdown关闭TLS/SSL连接。

  • SSL_METHOD 特定协议的操作函数,创建SSL_CTX时需要
  • SSL_CIPHER 加密算法信息,可以在SSL_CTX中指定可用的算法集合,SSL_SESSION中会记录实际使用的算法。
  • SSL_CTX 全局配置,包含SSL配置的默认值。
  • SSL_SESSION 包含当前session信息的结构,包括:加密算法、证书、密钥等
  • SSL SSL连接,

使用证书和密钥

        #include <openssl/ssl.h>

        /* CA 设置 */
        int SSL_CTX_load_verify_dir(SSL_CTX *ctx, const char *CApath);
        int SSL_CTX_load_verify_file(SSL_CTX *ctx, const char *CAfile);
        int SSL_CTX_load_verify_store(SSL_CTX *ctx, const char *CAstore);

        int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx);

        int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx);
        int SSL_CTX_set_default_verify_file(SSL_CTX *ctx);
        int SSL_CTX_set_default_verify_store(SSL_CTX *ctx);

        int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
                                          const char *CApath);

        /* CA证书相关操作 */
        void SSL_CTX_set_client_CA_list(SSL_CTX *ctx, STACK_OF(X509_NAME) *list);
        void SSL_set_client_CA_list(SSL *s, STACK_OF(X509_NAME) *list);
        STACK_OF(X509_NAME) *SSL_get_client_CA_list(const SSL *s);
        STACK_OF(X509_NAME) *SSL_CTX_get_client_CA_list(const SSL_CTX *ctx);
        int SSL_CTX_add_client_CA(SSL_CTX *ctx, X509 *cacert);
        int SSL_add_client_CA(SSL *ssl, X509 *cacert);

        void SSL_CTX_set0_CA_list(SSL_CTX *ctx, STACK_OF(X509_NAME) *name_list);
        void SSL_set0_CA_list(SSL *s, STACK_OF(X509_NAME) *name_list);
        const STACK_OF(X509_NAME) *SSL_CTX_get0_CA_list(const SSL_CTX *ctx);
        const STACK_OF(X509_NAME) *SSL_get0_CA_list(const SSL *s);
        int SSL_CTX_add1_to_CA_list(SSL_CTX *ctx, const X509 *x);
        int SSL_add1_to_CA_list(SSL *ssl, const X509 *x);

        const STACK_OF(X509_NAME) *SSL_get0_peer_CA_list(const SSL *s);

        /* 证书链设置 */
        int SSL_CTX_set0_chain(SSL_CTX *ctx, STACK_OF(X509) *sk);
        int SSL_CTX_set1_chain(SSL_CTX *ctx, STACK_OF(X509) *sk);
        int SSL_CTX_add0_chain_cert(SSL_CTX *ctx, X509 *x509);
        int SSL_CTX_add1_chain_cert(SSL_CTX *ctx, X509 *x509);
        int SSL_CTX_get0_chain_certs(SSL_CTX *ctx, STACK_OF(X509) **sk);
        int SSL_CTX_clear_chain_certs(SSL_CTX *ctx);

        int SSL_set0_chain(SSL *ssl, STACK_OF(X509) *sk);
        int SSL_set1_chain(SSL *ssl, STACK_OF(X509) *sk);
        int SSL_add0_chain_cert(SSL *ssl, X509 *x509);
        int SSL_add1_chain_cert(SSL *ssl, X509 *x509);
        int SSL_get0_chain_certs(SSL *ssl, STACK_OF(X509) **sk);
        int SSL_clear_chain_certs(SSL *ssl);

        int SSL_CTX_build_cert_chain(SSL_CTX *ctx, flags);
        int SSL_build_cert_chain(SSL *ssl, flags);

        /* 证书和密钥设置 */
        int SSL_CTX_use_certificate(SSL_CTX *ctx, X509 *x);
        int SSL_CTX_use_certificate_ASN1(SSL_CTX *ctx, int len, const unsigned char *d);
        int SSL_CTX_use_certificate_file(SSL_CTX *ctx, const char *file, int type);
        int SSL_use_certificate(SSL *ssl, X509 *x);
        int SSL_use_certificate_ASN1(SSL *ssl, const unsigned char *d, int len);
        int SSL_use_certificate_file(SSL *ssl, const char *file, int type);

        int SSL_CTX_use_certificate_chain_file(SSL_CTX *ctx, const char *file);
        int SSL_use_certificate_chain_file(SSL *ssl, const char *file);

        int SSL_CTX_use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey);
        int SSL_CTX_use_PrivateKey_ASN1(int pk, SSL_CTX *ctx, const unsigned char *d,
                                        long len);
        int SSL_CTX_use_PrivateKey_file(SSL_CTX *ctx, const char *file, int type);
        int SSL_CTX_use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa);
        int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, const unsigned char *d, long len);
        int SSL_CTX_use_RSAPrivateKey_file(SSL_CTX *ctx, const char *file, int type);
        int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey);
        int SSL_use_PrivateKey_ASN1(int pk, SSL *ssl, const unsigned char *d, long len);
        int SSL_use_PrivateKey_file(SSL *ssl, const char *file, int type);
        int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa);
        int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, const unsigned char *d, long len);
        int SSL_use_RSAPrivateKey_file(SSL *ssl, const char *file, int type);

        int SSL_CTX_check_private_key(const SSL_CTX *ctx);
        int SSL_check_private_key(const SSL *ssl);

        int SSL_CTX_use_cert_and_key(SSL_CTX *ctx, X509 *x, EVP_PKEY *pkey, STACK_OF(X509) *chain, int override);
        int SSL_use_cert_and_key(SSL *ssl, X509 *x, EVP_PKEY *pkey, STACK_OF(X509) *chain, int override);

        /* 证书选择 */
        int SSL_CTX_select_current_cert(SSL_CTX *ctx, X509 *x509);
        int SSL_select_current_cert(SSL *ssl, X509 *x509);
        int SSL_CTX_set_current_cert(SSL_CTX *ctx, long op);
        int SSL_set_current_cert(SSL *ssl, long op);

SSL_CTX操作

        #include <openssl/ssl.h>

        SSL_CTX *SSL_CTX_new_ex(OSSL_LIB_CTX *libctx, const char *propq,
                                const SSL_METHOD *method);
        SSL_CTX *SSL_CTX_new(const SSL_METHOD *method);
        int SSL_CTX_up_ref(SSL_CTX *ctx);

        const SSL_METHOD *TLS_method(void);
        const SSL_METHOD *TLS_server_method(void);
        const SSL_METHOD *TLS_client_method(void);

        const SSL_METHOD *SSLv23_method(void);
        const SSL_METHOD *SSLv23_server_method(void);
        const SSL_METHOD *SSLv23_client_method(void);

        #ifndef OPENSSL_NO_SSL3_METHOD
        const SSL_METHOD *SSLv3_method(void);
        const SSL_METHOD *SSLv3_server_method(void);
        const SSL_METHOD *SSLv3_client_method(void);
        #endif

        #ifndef OPENSSL_NO_TLS1_METHOD
        const SSL_METHOD *TLSv1_method(void);
        const SSL_METHOD *TLSv1_server_method(void);
        const SSL_METHOD *TLSv1_client_method(void);
        #endif

        #ifndef OPENSSL_NO_TLS1_1_METHOD
        const SSL_METHOD *TLSv1_1_method(void);
        const SSL_METHOD *TLSv1_1_server_method(void);
        const SSL_METHOD *TLSv1_1_client_method(void);
        #endif

        #ifndef OPENSSL_NO_TLS1_2_METHOD
        const SSL_METHOD *TLSv1_2_method(void);
        const SSL_METHOD *TLSv1_2_server_method(void);
        const SSL_METHOD *TLSv1_2_client_method(void);
        #endif

        const SSL_METHOD *DTLS_method(void);
        const SSL_METHOD *DTLS_server_method(void);
        const SSL_METHOD *DTLS_client_method(void);

        #ifndef OPENSSL_NO_DTLS1_METHOD
        const SSL_METHOD *DTLSv1_method(void);
        const SSL_METHOD *DTLSv1_server_method(void);
        const SSL_METHOD *DTLSv1_client_method(void);
        #endif

        #ifndef OPENSSL_NO_DTLS1_2_METHOD
        const SSL_METHOD *DTLSv1_2_method(void);
        const SSL_METHOD *DTLSv1_2_server_method(void);
        const SSL_METHOD *DTLSv1_2_client_method(void);
        #endif

        void SSL_CTX_free(SSL_CTX *ctx);

        uint64_t SSL_CTX_set_options(SSL_CTX *ctx, uint64_t options);
        uint64_t SSL_set_options(SSL *ssl, uint64_t options);

        uint64_t SSL_CTX_clear_options(SSL_CTX *ctx, uint64_t options);
        uint64_t SSL_clear_options(SSL *ssl, uint64_t options);

        uint64_t SSL_CTX_get_options(const SSL_CTX *ctx);
        uint64_t SSL_get_options(const SSL *ssl);

        long SSL_get_secure_renegotiation_support(SSL *ssl);


        typedef int (*SSL_verify_cb)(int preverify_ok, X509_STORE_CTX *x509_ctx);

        void SSL_CTX_set_verify(SSL_CTX *ctx, int mode, SSL_verify_cb verify_callback);
        void SSL_set_verify(SSL *ssl, int mode, SSL_verify_cb verify_callback);
        SSL_get_ex_data_X509_STORE_CTX_idx(void);

        void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth);
        void SSL_set_verify_depth(SSL *ssl, int depth);

        int SSL_verify_client_post_handshake(SSL *ssl);
        void SSL_CTX_set_post_handshake_auth(SSL_CTX *ctx, int val);
        void SSL_set_post_handshake_auth(SSL *ssl, int val);


        int SSL_CTX_set_min_proto_version(SSL_CTX *ctx, int version);
        int SSL_CTX_set_max_proto_version(SSL_CTX *ctx, int version);
        int SSL_CTX_get_min_proto_version(SSL_CTX *ctx);
        int SSL_CTX_get_max_proto_version(SSL_CTX *ctx);

        int SSL_set_min_proto_version(SSL *ssl, int version);
        int SSL_set_max_proto_version(SSL *ssl, int version);
        int SSL_get_min_proto_version(SSL *ssl);
        int SSL_get_max_proto_version(SSL *ssl);


        X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx);
        X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl);
        int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm);
        int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm);
        

一些SSL_CTX中的设置也可以在SSL中单独设置或修改,接口也一并在此列出。

SSL_CONF_CTX操作

        #include <openssl/ssl.h>

        SSL_CONF_CTX *SSL_CONF_CTX_new(void);
        void SSL_CONF_CTX_free(SSL_CONF_CTX *cctx);

        unsigned int SSL_CONF_CTX_set_flags(SSL_CONF_CTX *cctx, unsigned int flags);
        unsigned int SSL_CONF_CTX_clear_flags(SSL_CONF_CTX *cctx, unsigned int flags);

        unsigned int SSL_CONF_CTX_set1_prefix(SSL_CONF_CTX *cctx, const char *prefix);

        int SSL_CONF_cmd(SSL_CONF_CTX *ctx, const char *option, const char *value);
        int SSL_CONF_cmd_value_type(SSL_CONF_CTX *ctx, const char *option);

        int SSL_CONF_cmd_argv(SSL_CONF_CTX *cctx, int *pargc, char ***pargv);

        void SSL_CONF_CTX_set_ssl_ctx(SSL_CONF_CTX *cctx, SSL_CTX *ctx);
        void SSL_CONF_CTX_set_ssl(SSL_CONF_CTX *cctx, SSL *ssl);

SSL基本操作

        #include <openssl/ssl.h>

        SSL *SSL_new(SSL_CTX *ctx);
        SSL *SSL_dup(SSL *s);
        int SSL_up_ref(SSL *s);
        void SSL_free(SSL *ssl);

        int SSL_set_fd(SSL *ssl, int fd);
        int SSL_set_rfd(SSL *ssl, int fd);
        int SSL_set_wfd(SSL *ssl, int fd);
        
        int SSL_get_fd(const SSL *ssl);
        int SSL_get_rfd(const SSL *ssl);
        int SSL_get_wfd(const SSL *ssl);
        
        void SSL_set_bio(SSL *ssl, BIO *rbio, BIO *wbio);
        void SSL_set0_rbio(SSL *s, BIO *rbio);
        void SSL_set0_wbio(SSL *s, BIO *wbio);

        BIO *SSL_get_rbio(SSL *ssl);
        BIO *SSL_get_wbio(SSL *ssl);
                
        int SSL_accept(SSL *ssl);
        int SSL_connect(SSL *ssl);

        void SSL_set_connect_state(SSL *ssl);
        void SSL_set_accept_state(SSL *ssl);
        int SSL_is_server(const SSL *ssl);
        int SSL_do_handshake(SSL *ssl);
        
        int SSL_shutdown(SSL *ssl);
        int SSL_get_shutdown(const SSL *ssl);
        int SSL_clear(SSL *ssl);

        ossl_ssize_t SSL_sendfile(SSL *s, int fd, off_t offset, size_t size, int flags);
        int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written);
        int SSL_write(SSL *ssl, const void *buf, int num);

        int SSL_pending(const SSL *ssl);
        int SSL_has_pending(const SSL *s);
        
        int SSL_read_ex(SSL *ssl, void *buf, size_t num, size_t *readbytes);
        int SSL_read(SSL *ssl, void *buf, int num);

        int SSL_peek_ex(SSL *ssl, void *buf, size_t num, size_t *readbytes);
        int SSL_peek(SSL *ssl, void *buf, int num);

        int SSL_get_error(const SSL *ssl, int ret);

这些SSL函数不包含socket的基础操作,必须跟系统的socket或BIO结合使用。

   The behaviour of SSL_accept() depends on the underlying BIO.

   If the underlying BIO is blocking, SSL_accept() will only return once the handshake has been finished or an error occurred.

   If the underlying BIO is nonblocking, SSL_accept() will also return when the underlying BIO could not satisfy the needs of
   SSL_accept() to continue the handshake, indicating the problem by the return value -1.  In this case a call to SSL_get_error() with
   the return value of SSL_accept() will yield SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE. The calling process then must repeat the
   call after taking appropriate action to satisfy the needs of SSL_accept().  The action depends on the underlying BIO. When using a
   nonblocking socket, nothing is to be done, but select() can be used to check for the required condition. When using a buffering BIO,
   like a BIO pair, data must be written into or retrieved out of the BIO before being able to continue.

基于BIO的SSL操作

BIO socket 操作

#include <openssl/bio.h>

const BIO_METHOD *BIO_s_accept(void);

long BIO_set_accept_name(BIO *b, char *name);
char *BIO_get_accept_name(BIO *b);

long BIO_set_accept_port(BIO *b, char *port);
char *BIO_get_accept_port(BIO *b);

BIO *BIO_new_accept(char *host_port);

long BIO_set_nbio_accept(BIO *b, int n);
long BIO_set_accept_bios(BIO *b, char *bio);

char *BIO_get_peer_name(BIO *b);
char *BIO_get_peer_port(BIO *b);
long BIO_get_accept_ip_family(BIO *b);
long BIO_set_accept_ip_family(BIO *b, long family);

long BIO_set_bind_mode(BIO *b, long mode);
long BIO_get_bind_mode(BIO *b);

int BIO_do_accept(BIO *b);

注意:上述操作仅是socket操作,没有涉及SSL相关内容,要实现SSL通信,还需要结合以下SSL操作

SSL BIO操作

#include <openssl/bio.h>
#include <openssl/ssl.h>

const BIO_METHOD *BIO_f_ssl(void);

long BIO_set_ssl(BIO *b, SSL *ssl, long c);
long BIO_get_ssl(BIO *b, SSL **sslp);
long BIO_set_ssl_mode(BIO *b, long client);
long BIO_set_ssl_renegotiate_bytes(BIO *b, long num);
long BIO_set_ssl_renegotiate_timeout(BIO *b, long seconds);
long BIO_get_num_renegotiates(BIO *b);

BIO *BIO_new_ssl(SSL_CTX *ctx, int client);
BIO *BIO_new_ssl_connect(SSL_CTX *ctx);
BIO *BIO_new_buffer_ssl_connect(SSL_CTX *ctx);
int BIO_ssl_copy_session_id(BIO *to, BIO *from);
void BIO_ssl_shutdown(BIO *bio);

long BIO_do_handshake(BIO *b);

操作是否需要重试

在非阻塞模式下,操作无法立即完成时会返回错误,应用需要判断是需要重试还是真的有错误,判断是否需要重试、重试的原因和重试的操作:

int BIO_should_read(BIO *b);
int BIO_should_write(BIO *b);
int BIO_should_io_special(iBIO *b);
int BIO_retry_type(BIO *b);
int BIO_should_retry(BIO *b);

BIO *BIO_get_retry_BIO(BIO *bio, int *reason);
int BIO_get_retry_reason(BIO *bio);
void BIO_set_retry_reason(BIO *bio, int reason);

关于accept socket的非阻塞模块

设置非阻塞模式:long BIO_set_nbio_accept(BIO *b, int n);

   If the underlying accept socket is nonblocking and BIO_do_accept() is called to await an incoming connection it is possible for
   BIO_should_io_special() with the reason BIO_RR_ACCEPT. If this happens then it is an indication that an accept attempt would block:
   the application should take appropriate action to wait until the underlying socket has accepted a connection and retry the call.

如果accept socket是非阻塞模式,调用BIO_do_accept来等待连接,当前没有连接时会返回错误,BIO_should_retry会返回true,说明操作需要重试,BIO_should_io_special会返回true并且BIO_get_retry_reason会返回 BIO_RR_ACCEPT,这种情况说明accept操作需要阻塞等待,应用程序应该等待直到底层socket接受一个连接后再重试BIO_do_accept。等待可用使用select/poll/epoll来实现。

demo解读

server-arg

  • 首先需要构建一个用于server端的SSL_CTX对象ctx:ctx = SSL_CTX_new(TLS_server_method());
  • 再构建一个SSL_CONF_CTX对象cctx对ctx进行配置:cctx = SSL_CONF_CTX_new(); SSL_CONF_CTX_set_ssl_ctx(cctx, ctx);
  • 构建server socket BIO: in = BIO_new_accept(port) 等价于:
    BIO * in = BIO_new(BIO_s_accept());
    BIO_set_accept_name(in, port)
    
  • 构建一个用于server端连接的BIO:ssl_bio = BIO_new_ssl(ctx, 0);
    将ssl_bio指定用于server socket传入连接BIO的处理,每个传入连接会复制ssl_bio对象(链),使用ssl_bio一致的方式处理传入连接,即相当于:
    int fd = accept();
    BIO* conn_io = BIO_new_fd(fd, 1);
    ssl_io = BIO_dup_chain(ssl_bio);
    BIO_push(ssl_io, conn_io);
    
  • 接受连接:BIO_do_accept(in)
  • 接受连接后,进行读写操作BIO_read(in, buf, 512);
    新建连接对应的BIO对象被串到accept BIO之后,即accept->socket,此时读写accept BIO对象,相当于读写socket BIO,而没有接受连接之前读写accept BIO,accept BIO在BIO链的末端,会先等待连接,再在socket BIO上执行读写操作。而之前还调用了BIO_set_accept_bios(),BIO链应该是accept->otherbios->socket。
  • 连接用完之后要关闭它,先将它从BIO链中移除:tmp = BIO_pop(in);
    这里返回的tmp实际是BIO链otherbios->socket,可以关闭它,也可以做其他IO操作,需要并发处理多个连接时,通常在BIO_do_accept之后,执行BIO_pop得到对应连接的BIO,进行后续处理,而accept BIO就可以再次执行BIO_do_accept
  • 关闭socket BIO:BIO_free_all(tmp);
    注意这里是一个BIO链,所以用BIO_free_all全部关闭。
  • 最后关闭accept BIO:IO_free(in);
    关闭accept BIO的同时会自动关闭之前设置的ssl_bio。

client-arg

  • 构建一个用于client端的SSL_CTX对象ctx:ctx = SSL_CTX_new(TLS_client_method());
  • 再构建一个SSL_CONF_CTX对象cctx对ctx进行配置:cctx = SSL_CONF_CTX_new(); SSL_CONF_CTX_set_ssl_ctx(cctx, ctx);
  • 创建用于客户端连接的BIO对象:sbio = BIO_new_ssl_connect(ctx);
  • 指定服务端地址端口:BIO_set_conn_hostname(sbio, connect_str);
  • 连接到服务器:BIO_do_connect(sbio)
  • 发送请求:BIO_puts(sbio, “GET / HTTP/1.0\n\n”);
  • 读应答:BIO_read(sbio, tmpbuf, 1024);
  • 关闭连接:BIO_free_all(sbio);
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/doushi/article/details/122796627

智能推荐

Asp.net面试题_asp.net标签必须是小写吗-程序员宅基地

文章浏览阅读3.4k次,点赞2次,收藏27次。Asp.net核心技术思想 1、概述反射和序列化反射:程序集包含模块,而模块包含类型,类型又包含成员。反射则提供了封装程序集、模块和类型的对象。您可以使用反射动态地创建类型的实例,将类型绑定到现有对象,或从现有对象中获取类型。然后,可以调用类型的方法或访问其字段和属性序列化:序列化是将对象转换为容易传输的格式的过程。例如,可以序列化一个对象,然后使用 HTTP 通过 Internet_asp.net标签必须是小写吗

iphone 把图片保存到Photo Album_iphone file文件放入album-程序员宅基地

文章浏览阅读960次。uikit里有一个函数是UIImageWriteToSavedPhotosAlbum可以实现_iphone file文件放入album

Armv8-A架构安全特性总结_arm sel2技术-程序员宅基地

文章浏览阅读1.2k次。Arm-A 体系架构安全特性总结:安全特性 英文拼写 说明 应对的攻击 引入的版本 XN execute never 不可执行。一般用于配置数据段不可执行,防止数据段注入可执行的shell code。 使用XN可执行DEP(Data execute Prevention,一般我们通常说的堆栈不可执行) 任意地址读写、代码段覆盖 < v8 PXN Privileged Execute Never 特权模式不可执..._arm sel2技术

数据模型的含义是什么?为什么要建立数据模型_什么是数据模型-程序员宅基地

文章浏览阅读9.8k次。数据模型(Data Model)是2113数据特征的5261抽象。数据(Data)是描述事物的符号记录,模型(4102Model)是现实世界的抽象。数据1653模型从抽象层次上描述了系统的静态特征、动态行为和约束条件,为数据库系统的信息表示与操作提供了一个抽象的框架。数据模型所描述的内容有三部分:数据结构、数据操作和数据约束。扩展资料:数据模型所描述的内容包括三个部分:数据结构、数据操作、数据约束。1、数据结构:数据模型中的数据结构主要描述数据的类型、内容、性质以及数据间的联系等。数据结构是数据模型_什么是数据模型

探索Dashicons:WordPress的图标字体库-程序员宅基地

文章浏览阅读316次,点赞3次,收藏6次。探索Dashicons:WordPress的图标字体库项目地址:https://gitcode.com/WordPress/dashicons项目简介Dashicons是WordPress官方开发的一个图标字体库,它提供了一系列SVG图标供开发者在构建WordPress主题和插件时使用。这些图标具有高度可定制性、轻量级且易于集成的特点,旨在提升用户体验并增强界面设计的一致性。技术分析字体...

前端程序调试方法总结--初级版_数据库前端调试方法-程序员宅基地

文章浏览阅读674次。文章目录VUE程序调试的方法1.写本文的背景2.调试与测试3.Console调试法3.1 添加console.log指令3.2 调出温度界面如下3.3 Google浏览器的Console窗口3.4 console.error输出3.5 浏览器输出4.alert 调试法4.1 alert方法代码4.2 alert提示效果5 断点调试法5.1 设置断点5.2 运行代码5.3 输入关心的属性5.3.1 ..._数据库前端调试方法

随便推点

UNITY开发VR从入门到放弃---VR自学手册_unity vr-程序员宅基地

文章浏览阅读2.6w次,点赞54次,收藏349次。如何快速学习VR开发,以及HTCvive的使用。_unity vr

Andorid 屏幕适配_android dpi适配-程序员宅基地

文章浏览阅读188次。1、dpi是什么?2、dp和px转换3、适配策略(宽度百分比,高度长宽比)_android dpi适配

VUE导入项目问题解决办法:找不到依赖此文件夹缺少 ‘node_modules‘。请安装依赖后再尝试导入。_此文件夹缺少 'node_modules'。请安装依赖后再尝试导入。-程序员宅基地

文章浏览阅读1w次,点赞5次,收藏8次。从Gitee上拉取前端项目,导入vue时遇到问题时分析过程_此文件夹缺少 'node_modules'。请安装依赖后再尝试导入。

C语言实现基2DIF-FFT算法(桑德·图基快速傅立叶变换)_桑德图基-程序员宅基地

文章浏览阅读9.1k次,点赞8次,收藏31次。傅立叶变换能将时域信号转换为由sin函数为基底的频域信号,从而我们可以从信号中提取出频率信息或截断频谱简化信号压缩信息。计算机难以处理连续信号。DFT是一种适用于计算机处理的有限信号时频转换方法。DFT用一句话概括,就是将连续信号(频域也是连续函数)经过时域采样(这样会使信号的频域发生周期延拓,得到周期连续的函数,计算机无法处理),再经过频域采样(这样会使时域信号发生周期延拓,时域周期延拓这一步可..._桑德图基

指针的基本知识_指针指向的是值还是地址-程序员宅基地

文章浏览阅读1.4k次。指针一、指针是什么1、指针是什么?指针理解的2个要点:1. 指针是内存中一个最小单元的编号,也就是地址;2. 平时口语中说的指针,通常指的是指针变量,是用来存放内存地址的变量总结:指针就是地址,口语中说得指针通常值得是指针变量2、指针变量我们可以通过&(取地址操作符)取出变量的内存真实地址,吧地址可以存放到一个变量中,这个变量就是指针变量。实例#include <stdio.h> { int a=10; _指针指向的是值还是地址

力扣Leetcode 2 两数相加 Add Two Numbers_力扣 2. 两数相加 add two numbers 调试-程序员宅基地

文章浏览阅读85次。暴力法递归法_力扣 2. 两数相加 add two numbers 调试

推荐文章

热门文章

相关标签