Stable_diffsuion代码解析_ldm self.model_channels-程序员宅基地

技术标签: 计算机视觉  深度学习  人工智能  

零 代码文件结构

assets文件夹 存放项目中使用的静态资源

config文件夹 存放配置信息

  • autoencoder文件夹 自动编码器参数配置
  • latent-diffusion文件夹 ldm参数配置
  • retrieval-augmented-diffusion文件夹
  • stable-diffusion文件夹

data文件夹 存放一些条件和图片案例

models文件夹 存放预训练模型和参数配置

  • first_stage_models文件夹 存放AutoEncoderKL和VQModel的参数设置
  • ldm文件夹 存放ldm不同工作的配置文件,例如文生图,语言生图,风格迁移等等

scripts文件夹 存放拓展脚本,例如实现文生图、图生图的py代码

ldm文件夹 存放ldm主要代码文件

  • data文件夹 存放各种定义Dataset的代码
  • models文件夹 存放diffusion文件夹和autoencoder文件(VQ-VAE)
    • diffusion文件夹 存放DDPM/DDIM等等的diffusion Scheduler代码文件
  • modules文件夹
    • diffusionmodules文件夹 存放diffusion策略代码文件
    • distributions文件夹
    • encoder文件夹 存放条件编码器代码
    • image_degradation文件夹 存放图像渐变工具代码
    • loss文件夹

main.py 主代码,改这里就行

一 ldm文件夹

1 data文件夹

2 models文件夹

2.1 ddpm.py

2.1.1 class DDPM(图像空间中具有高斯扩散的经典DDPM)

a.参数初始化部分

传入参数:
unet_config: U-Net模型的配置参数。
timesteps: 模型的时间步数,默认为1000。
beta_schedule: 控制beta参数的调度方式。
loss_type: 损失函数的类型,默认为"L2"。
ckpt_path: 模型的检查点路径。
ignore_keys: 要忽略的键值列表。
load_only_unet: 是否仅加载U-Net模型。
monitor: 用于监控的指标,默认为"val/loss"。
use_ema: 是否使用指数移动平均。
first_stage_key: 第一个阶段的关键键值。
image_size: 图像大小,默认为256。
channels: 输入图像的通道数。
log_every_t: 每隔多少时间步记录一次日志。
clip_denoised: 是否剪裁去噪结果。
linear_start和linear_end: 用于线性调度的起始和结束值。
cosine_s: 余弦调度的参数。
given_betas: 给定的参数列表。
original_elbo_weight: 原始ELBO权重。
v_posterior: 选择后验方差的权重。
l_simple_weight: 简单权重。
conditioning_key: 条件键值。
parameterization: 参数化方式,目前支持"eps""x0"。
scheduler_config: 调度器配置。
use_positional_encodings: 是否使用位置编码。
learn_logvar: 是否学习对数方差。
logvar_init: 对数方差的初始值。

初始化操作:
作者将大多数输入参数都本地化,少数参数进行特殊处理
self.model = DiffusionWrapper(unet_config, conditioning_key)
if self.use_ema:
   self.model_ema = LitEma(self.model)
   print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}."
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
if self.learn_logvar:
   self.logvar = nn.Parameter(self.logvar, requires_grad=True)

b.register_schedule方法

    """
    该方法的作用:1.设置beta、alphas
    		   2.
    """
    def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
                          linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
        #生成beta
        if exists(given_betas):
            betas = given_betas
        else:
            betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
                                       cosine_s=cosine_s)
        #计算alphas
        alphas = 1. - betas
        #计算alphas_cumprod
        alphas_cumprod = np.cumprod(alphas, axis=0)
        #将alphas_cumprod第一个元素变成1
        alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])

        timesteps, = betas.shape
        self.num_timesteps = int(timesteps)
        self.linear_start = linear_start
        self.linear_end = linear_end
        #有多少个t就得有多少个alphas_cumprod
        assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'

        #确保数据转换为tensor时数据类型时f32
        to_torch = partial(torch.tensor, dtype=torch.float32)

        #register_buffer是PyTorch中nn.Module类提供的一个方法,用于将一个缓冲区(buffer)注册到模型中。
        #缓冲区是一些在模型训练期间不需要梯度的参数,比如常数、移动平均值等。
        #通过register_buffer,这些缓冲区可以与模型的状态一起保存和加载。
        self.register_buffer('betas', to_torch(betas))
        self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
        self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))

        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
        self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
        self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
        self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
        self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))

        # 计算扩散过程中后验分布的真实的方差和均值,方差是一个常数可以直接计算,均值和xt有关,但是均值的两个系数是可以先确定的
        posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
                    1. - alphas_cumprod) + self.v_posterior * betas
        # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
        self.register_buffer('posterior_variance', to_torch(posterior_variance))
        # 由于扩散链开始时的后验方差为0,因此对数计算被截断
        self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
        #求解均值的两个参数
        self.register_buffer('posterior_mean_coef1', to_torch(
            betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
        self.register_buffer('posterior_mean_coef2', to_torch(
            (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))

        if self.parameterization == "eps":
            lvlb_weights = self.betas ** 2 / (
                        2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
        elif self.parameterization == "x0":
            lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
        else:
            raise NotImplementedError("mu not supported")
        # TODO how to choose this term
        lvlb_weights[0] = lvlb_weights[1]
        self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
        assert not torch.isnan(self.lvlb_weights).all()

c.init_from_ckpt方法

    def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
        #加载检查点模型
        sd = torch.load(path, map_location="cpu")
        if "state_dict" in list(sd.keys()):
            sd = sd["state_dict"]
        keys = list(sd.keys())
        for k in keys:
            for ik in ignore_keys:
                if k.startswith(ik):
                    print("Deleting key {} from state_dict.".format(k))
                    del sd[k]
        #如果 only_model 为 True,则仅加载模型的状态字典,否则加载整个模型
        missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
            sd, strict=False)
        print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
        if len(missing) > 0:
            print(f"Missing Keys: {missing}")
        if len(unexpected) > 0:
            print(f"Unexpected Keys: {unexpected}")

c.q_mean_variance 计算加噪的均值方差

    def q_mean_variance(self, x_start, t):
        """
		得到分布q(x_t|x_0)。
		param x_start:无噪声输入的[N x C x…]张量。
		param t:扩散步骤数(减1)。这里,0表示一步。
		return:一个元组(均值、方差、对数方差),所有x_start的形状。
        """
        mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
        variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
        log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
        return mean, variance, log_variance

d.predict_start_from_noise 根据x_t和噪声得出x_0
在这里插入图片描述

    def predict_start_from_noise(self, x_t, t, noise):
        return (
                extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
                extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
        )

e.q_posterior 根据x_t和x_0计算q(x_t-1|x_t,x_0)的均值方差
在这里插入图片描述
在这里插入图片描述

    def q_posterior(self, x_start, x_t, t):
        posterior_mean = (
                extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
                extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
        )
        posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
        posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
        return posterior_mean, posterior_variance, posterior_log_variance_clipped

f.p_mean_variance
在这里插入图片描述

	# 计算神经网络重构的原始图片下的去噪分布p(x_t-1|x_t)
    def p_mean_variance(self, x, t, clip_denoised: bool):
        model_out = self.model(x, t)
        if self.parameterization == "eps":
            x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)# 送入模型,得到t时刻的随机噪声预测值
        elif self.parameterization == "x0":
        # 从神经网络预测的噪声中重构出样本,即网络预测的x_0
            x_recon = model_out
        if clip_denoised:
            x_recon.clamp_(-1., 1.)
 # 计算q(x_t-1|xt, x_recon)的分布参数 详情见上公式
        model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
        return model_mean, posterior_variance, posterior_log_variance

g.Sample 正向过程和反向过程
反向去噪:

	#去噪一步
    @torch.no_grad()
    def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
        b, *_, device = *x.shape, x.device
        #计算分布的均值标准差
        model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
        noise = noise_like(x.shape, device, repeat_noise)
        # no noise when t == 0
        nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
        #返回去噪的图像
        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise

#进行全部去噪
def p_sample_loop(self, shape, return_intermediates=False):
    # 获取设备信息
    device = self.betas.device
    
    # 获取 batch size
    b = shape[0]
    
    # 生成一个形状为 shape 的随机张量 img
    img = torch.randn(shape, device=device)
    
    # 创建一个列表 intermediates 用于存储中间结果,初始时包含随机生成的 img
    intermediates = [img]
    
    # 使用 tqdm 迭代从 self.num_timesteps 到 0 的范围
    for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
        # 调用 self.p_sample 方法进行采样
        img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
                            clip_denoised=self.clip_denoised)
        
        # 每隔 self.log_every_t 个步骤或在最后一个步骤时,将当前结果添加到 intermediates 列表中
        if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
            intermediates.append(img)
    # 如果 return_intermediates 为 True,则返回最终结果和中间结果列表 intermediates
    if return_intermediates:
        return img, intermediates
    # 否则,只返回最终结果
    return img

正向加噪

@torch.no_grad()
def sample(self, batch_size=16, return_intermediates=False):
    image_size = self.image_size
    channels = self.channels
    return self.p_sample_loop((batch_size, channels, image_size, image_size),
                              return_intermediates=return_intermediates)
#根据x_0加噪获得x_t
def q_sample(self, x_start, t, noise=None):
    noise = default(noise, lambda: torch.randn_like(x_start))
    return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
            extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)

h.计算重构损失 代码比较简单

    def get_loss(self, pred, target, mean=True):
        if self.loss_type == 'l1':
            loss = (target - pred).abs()
            if mean:
                loss = loss.mean()
        elif self.loss_type == 'l2':
            if mean:
                loss = torch.nn.functional.mse_loss(target, pred)
            else:
                loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
        else:
            raise NotImplementedError("unknown loss type '{loss_type}'")

        return loss

以下代码为计算整个训练过程的损失:

    def p_losses(self, x_start, t, noise=None):
    	#初始化随机噪声
        noise = default(noise, lambda: torch.randn_like(x_start))
        #加噪
        x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
        #预测噪声
        model_out = self.model(x_noisy, t)
		
        loss_dict = {
    }
        if self.parameterization == "eps":
            target = noise
        elif self.parameterization == "x0":
            target = x_start
        else:
            raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
		#计算loss
        loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])

        log_prefix = 'train' if self.training else 'val'

        loss_dict.update({
    f'{log_prefix}/loss_simple': loss.mean()})
        loss_simple = loss.mean() * self.l_simple_weight

        loss_vlb = (self.lvlb_weights[t] * loss).mean()
        loss_dict.update({
    f'{log_prefix}/loss_vlb': loss_vlb})

        loss = loss_simple + self.original_elbo_weight * loss_vlb

        loss_dict.update({
    f'{log_prefix}/loss': loss})

        return loss, loss_dict
2.1.2 class LatentDiffusion(DDPM):

崩溃了,这代码又臭又多

2.2 autoencoder.py

2.2.1 class VQModel

a.初始化:

class VQModel(pl.LightningModule):
    def __init__(self,
                 ddconfig,           # 数据加载和处理配置
                 lossconfig,         # 损失函数配置
                 n_embed,            # 嵌入的数量
                 embed_dim,          # 嵌入的维度
                 ckpt_path=None,     # 模型的检查点路径,默认为 None
                 ignore_keys=[],      # 初始化时要忽略的键的列表
                 image_key="image",   # 输入图像的键名,默认为 "image"
                 colorize_nlabels=None, # 要着色的标签数量,可选,默认为 None
                 monitor=None,        # 监控器,可选,默认为 None
                 batch_resize_range=None,  # 批量调整大小的范围,可选,默认为 None
                 scheduler_config=None,    # 调度器配置,可选,默认为 None
                 lr_g_factor=1.0,      # 学习率缩放因子,默认为 1.0
                 remap=None,          # 重映射参数,可选,默认为 None
                 sane_index_shape=False,  # 告诉矢量量化器将索引返回为 bhw(batch, height, width)形状,默认为 False
                 use_ema=False        # 是否使用指数移动平均(EMA),默认为 False
                 ):
        super().__init__()

        # 设置模型的各种属性
        self.embed_dim = embed_dim
        self.n_embed = n_embed
        self.image_key = image_key
        #定义encoder和decoder,都是使用的unet架构,
        self.encoder = Encoder(**ddconfig)
        self.decoder = Decoder(**ddconfig)
        self.loss = instantiate_from_config(lossconfig)
        #VQ编码层
        self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
                                        remap=remap,
                                        sane_index_shape=sane_index_shape)
        self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
        self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)

        # 如果指定了要着色的标签数量,则注册颜色缓冲区
        if colorize_nlabels is not None:
            assert type(colorize_nlabels) == int
            self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))

        # 如果指定了监控器,则设置监控器
        if monitor is not None:
            self.monitor = monitor

        # 如果指定了批量调整大小的范围,则进行相应的设置
        self.batch_resize_range = batch_resize_range
        if self.batch_resize_range is not None:
            print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")

        # 设置是否使用指数移动平均(EMA)
        self.use_ema = use_ema
        if self.use_ema:
            # 如果使用 EMA,则创建 EMA 模型
            self.model_ema = LitEma(self)
            print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")

        # 如果指定了检查点路径,则从检查点初始化模型,同时忽略指定的键
        if ckpt_path is not None:
            self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)

b.调用encoder和decode

    def encode(self, x):
        h = self.encoder(x)
        #添加卷积层改变通道数为embed_dim
        h = self.quant_conv(h)
        quant, emb_loss, info = self.quantize(h)
        return quant, emb_loss, info
	#完成了编码器到codebook通道数转换
    def encode_to_prequant(self, x):
        h = self.encoder(x)
        h = self.quant_conv(h)
        return h

    def decode(self, quant):
        quant = self.post_quant_conv(quant)
        dec = self.decoder(quant)
        return dec
	#codebook到解码器的通道数转换
    def decode_code(self, code_b):
        quant_b = self.quantize.embed_code(code_b)
        dec = self.decode(quant_b)
        return dec
2.2.2 class AutoencoderKL

3 modules文件夹

3.1 diffusionmodules文件夹

3.1.1 model.py

**a.get_timestep_embedding 计算timestep_embedding
其中生成方法如下图所示:
在这里插入图片描述

def get_timestep_embedding(timesteps, embedding_dim):

    assert len(timesteps.shape) == 1
    #计算dim的一半
    half_dim = embedding_dim // 2
    #计算基于指数的缩放因子,用于给嵌入向量中每个维度赋予不同的重要性
    emb = math.log(10000) / (half_dim - 1)
    #创建了一个指数级别的权重张量,用于加权每个时间步的不同维度
    emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
    emb = emb.to(device=timesteps.device)
    #: 将每个时间步乘以权重张量,这样每个时间步都被映射到嵌入空间的一部分
    emb = timesteps.float()[:, None] * emb[None, :]
    #将计算出的嵌入值分别进行正弦和余弦变换,并将结果连接起来,以增加嵌入的多样性和表示能力
    emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
    if embedding_dim % 2 == 1:  # zero pad
        emb = torch.nn.functional.pad(emb, (0,1,0,0))
    return emb

b.用于unet网络的组件 上采样、下采样、ResnetBlock、LinAttnBlock、AttnBlock、make_attn
resnetblock结构如下:
在这里插入图片描述

class ResnetBlock(nn.Module):
    def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
                 dropout, temb_channels=512):
        super().__init__()
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut

        self.norm1 = Normalize(in_channels)
        self.conv1 = torch.nn.Conv2d(in_channels,
                                     out_channels,
                                     kernel_size=3,
                                     stride=1,
                                     padding=1)
        if temb_channels > 0:
            self.temb_proj = torch.nn.Linear(temb_channels,
                                             out_channels)
        self.norm2 = Normalize(out_channels)
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = torch.nn.Conv2d(out_channels,
                                     out_channels,
                                     kernel_size=3,
                                     stride=1,
                                     padding=1)
        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                self.conv_shortcut = torch.nn.Conv2d(in_channels,
                                                     out_channels,
                                                     kernel_size=3,
                                                     stride=1,
                                                     padding=1)
            else:
                self.nin_shortcut = torch.nn.Conv2d(in_channels,
                                                    out_channels,
                                                    kernel_size=1,
                                                    stride=1,
                                                    padding=0)

    def forward(self, x, temb):
        h = x
        h = self.norm1(h)
        h = nonlinearity(h)
        h = self.conv1(h)

        if temb is not None:
            h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]

        h = self.norm2(h)
        h = nonlinearity(h)
        h = self.dropout(h)
        h = self.conv2(h)

        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                x = self.conv_shortcut(x)
            else:
                x = self.nin_shortcut(x)

        return x+h

上/下采样如下:

class Upsample(nn.Module):
    def __init__(self, in_channels, with_conv):
        super().__init__()
        self.with_conv = with_conv
        if self.with_conv:
            self.conv = torch.nn.Conv2d(in_channels,
                                        in_channels,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)

    def forward(self, x):
        x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
        if self.with_conv:
            x = self.conv(x)
        return x


class Downsample(nn.Module):
    def __init__(self, in_channels, with_conv):
        super().__init__()
        self.with_conv = with_conv
        if self.with_conv:
            # no asymmetric padding in torch conv, must do it ourselves
            self.conv = torch.nn.Conv2d(in_channels,
                                        in_channels,
                                        kernel_size=3,
                                        stride=2,
                                        padding=0)

    def forward(self, x):
        if self.with_conv:
            pad = (0,1,0,1)
            x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
            x = self.conv(x)
        else:
            x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
        return x

attention_block如下:

class AttnBlock(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.in_channels = in_channels

        self.norm = Normalize(in_channels)
        self.q = torch.nn.Conv2d(in_channels,
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
        self.k = torch.nn.Conv2d(in_channels,
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
        self.v = torch.nn.Conv2d(in_channels,
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
        self.proj_out = torch.nn.Conv2d(in_channels,
                                        in_channels,
                                        kernel_size=1,
                                        stride=1,
                                        padding=0)


    def forward(self, x):
        h_ = x
        h_ = self.norm(h_)
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)

        # compute attention
        b,c,h,w = q.shape
        q = q.reshape(b,c,h*w)
        q = q.permute(0,2,1)   # b,hw,c
        k = k.reshape(b,c,h*w) # b,c,hw
        w_ = torch.bmm(q,k)     # b,hw,hw    w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
        w_ = w_ * (int(c)**(-0.5))
        w_ = torch.nn.functional.softmax(w_, dim=2)

        # attend to values
        v = v.reshape(b,c,h*w)
        w_ = w_.permute(0,2,1)   # b,hw,hw (first hw of k, second of q)
        h_ = torch.bmm(v,w_)     # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
        h_ = h_.reshape(b,c,h,w)

        h_ = self.proj_out(h_)

        return x+h_

最终的unet网络如下:

class Model(nn.Module):
    def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
                 attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
                 resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
        super().__init__()
        if use_linear_attn: attn_type = "linear"
        self.ch = ch
        self.temb_ch = self.ch*4
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels

        self.use_timestep = use_timestep
        if self.use_timestep:
            # timestep embedding
            self.temb = nn.Module()
            self.temb.dense = nn.ModuleList([
                torch.nn.Linear(self.ch,
                                self.temb_ch),
                torch.nn.Linear(self.temb_ch,
                                self.temb_ch),
            ])

        # downsampling
        self.conv_in = torch.nn.Conv2d(in_channels,
                                       self.ch,
                                       kernel_size=3,
                                       stride=1,
                                       padding=1)

        curr_res = resolution
        in_ch_mult = (1,)+tuple(ch_mult)
        self.down = nn.ModuleList()
        for i_level in range(self.num_resolutions):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_in = ch*in_ch_mult[i_level]
            block_out = ch*ch_mult[i_level]
            for i_block in range(self.num_res_blocks):
                block.append(ResnetBlock(in_channels=block_in,
                                         out_channels=block_out,
                                         temb_channels=self.temb_ch,
                                         dropout=dropout))
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(make_attn(block_in, attn_type=attn_type))
            down = nn.Module()
            down.block = block
            down.attn = attn
            if i_level != self.num_resolutions-1:
                down.downsample = Downsample(block_in, resamp_with_conv)
                curr_res = curr_res // 2
            self.down.append(down)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)
        self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
        self.mid.block_2 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)

        # upsampling
        self.up = nn.ModuleList()
        for i_level in reversed(range(self.num_resolutions)):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_out = ch*ch_mult[i_level]
            skip_in = ch*ch_mult[i_level]
            for i_block in range(self.num_res_blocks+1):
                if i_block == self.num_res_blocks:
                    skip_in = ch*in_ch_mult[i_level]
                block.append(ResnetBlock(in_channels=block_in+skip_in,
                                         out_channels=block_out,
                                         temb_channels=self.temb_ch,
                                         dropout=dropout))
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(make_attn(block_in, attn_type=attn_type))
            up = nn.Module()
            up.block = block
            up.attn = attn
            if i_level != 0:
                up.upsample = Upsample(block_in, resamp_with_conv)
                curr_res = curr_res * 2
            self.up.insert(0, up) # prepend to get consistent order

        # end
        self.norm_out = Normalize(block_in)
        self.conv_out = torch.nn.Conv2d(block_in,
                                        out_ch,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)

    def forward(self, x, t=None, context=None):
        #assert x.shape[2] == x.shape[3] == self.resolution
        if context is not None:
            # assume aligned context, cat along channel axis
            x = torch.cat((x, context), dim=1)
        if self.use_timestep:
            # timestep embedding
            assert t is not None
            temb = get_timestep_embedding(t, self.ch)
            temb = self.temb.dense[0](temb)
            temb = nonlinearity(temb)
            temb = self.temb.dense[1](temb)
        else:
            temb = None

        # downsampling
        hs = [self.conv_in(x)]
        for i_level in range(self.num_resolutions):
            for i_block in range(self.num_res_blocks):
                h = self.down[i_level].block[i_block](hs[-1], temb)
                if len(self.down[i_level].attn) > 0:
                    h = self.down[i_level].attn[i_block](h)
                hs.append(h)
            if i_level != self.num_resolutions-1:
                hs.append(self.down[i_level].downsample(hs[-1]))

        # middle
        h = hs[-1]
        h = self.mid.block_1(h, temb)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h, temb)

        # upsampling
        for i_level in reversed(range(self.num_resolutions)):
            for i_block in range(self.num_res_blocks+1):
                h = self.up[i_level].block[i_block](
                    torch.cat([h, hs.pop()], dim=1), temb)
                if len(self.up[i_level].attn) > 0:
                    h = self.up[i_level].attn[i_block](h)
            if i_level != 0:
                h = self.up[i_level].upsample(h)

        # end
        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        return h

    def get_last_layer(self):
        return self.conv_out.weight

下面是VQ-VAE中的encoder和decoder:

class Encoder(nn.Module):
    def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
                 attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
                 resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
                 **ignore_kwargs):
        super().__init__()
        if use_linear_attn: attn_type = "linear"
        self.ch = ch
        self.temb_ch = 0
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels

        # downsampling
        self.conv_in = torch.nn.Conv2d(in_channels,
                                       self.ch,
                                       kernel_size=3,
                                       stride=1,
                                       padding=1)

        curr_res = resolution
        in_ch_mult = (1,)+tuple(ch_mult)
        self.in_ch_mult = in_ch_mult
        self.down = nn.ModuleList()
        for i_level in range(self.num_resolutions):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_in = ch*in_ch_mult[i_level]
            block_out = ch*ch_mult[i_level]
            for i_block in range(self.num_res_blocks):
                block.append(ResnetBlock(in_channels=block_in,
                                         out_channels=block_out,
                                         temb_channels=self.temb_ch,
                                         dropout=dropout))
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(make_attn(block_in, attn_type=attn_type))
            down = nn.Module()
            down.block = block
            down.attn = attn
            if i_level != self.num_resolutions-1:
                down.downsample = Downsample(block_in, resamp_with_conv)
                curr_res = curr_res // 2
            self.down.append(down)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)
        self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
        self.mid.block_2 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)

        # end
        self.norm_out = Normalize(block_in)
        self.conv_out = torch.nn.Conv2d(block_in,
                                        2*z_channels if double_z else z_channels,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)

    def forward(self, x):
        # timestep embedding
        temb = None

        # downsampling
        hs = [self.conv_in(x)]
        for i_level in range(self.num_resolutions):
            for i_block in range(self.num_res_blocks):
                h = self.down[i_level].block[i_block](hs[-1], temb)
                if len(self.down[i_level].attn) > 0:
                    h = self.down[i_level].attn[i_block](h)
                hs.append(h)
            if i_level != self.num_resolutions-1:
                hs.append(self.down[i_level].downsample(hs[-1]))

        # middle
        h = hs[-1]
        h = self.mid.block_1(h, temb)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h, temb)

        # end
        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        return h


class Decoder(nn.Module):
    def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
                 attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
                 resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
                 attn_type="vanilla", **ignorekwargs):
        super().__init__()
        if use_linear_attn: attn_type = "linear"
        self.ch = ch
        self.temb_ch = 0
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels
        self.give_pre_end = give_pre_end
        self.tanh_out = tanh_out

        # compute in_ch_mult, block_in and curr_res at lowest res
        in_ch_mult = (1,)+tuple(ch_mult)
        block_in = ch*ch_mult[self.num_resolutions-1]
        curr_res = resolution // 2**(self.num_resolutions-1)
        self.z_shape = (1,z_channels,curr_res,curr_res)
        print("Working with z of shape {} = {} dimensions.".format(
            self.z_shape, np.prod(self.z_shape)))

        # z to block_in
        self.conv_in = torch.nn.Conv2d(z_channels,
                                       block_in,
                                       kernel_size=3,
                                       stride=1,
                                       padding=1)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)
        self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
        self.mid.block_2 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)

        # upsampling
        self.up = nn.ModuleList()
        for i_level in reversed(range(self.num_resolutions)):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_out = ch*ch_mult[i_level]
            for i_block in range(self.num_res_blocks+1):
                block.append(ResnetBlock(in_channels=block_in,
                                         out_channels=block_out,
                                         temb_channels=self.temb_ch,
                                         dropout=dropout))
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(make_attn(block_in, attn_type=attn_type))
            up = nn.Module()
            up.block = block
            up.attn = attn
            if i_level != 0:
                up.upsample = Upsample(block_in, resamp_with_conv)
                curr_res = curr_res * 2
            self.up.insert(0, up) # prepend to get consistent order

        # end
        self.norm_out = Normalize(block_in)
        self.conv_out = torch.nn.Conv2d(block_in,
                                        out_ch,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)

    def forward(self, z):
        #assert z.shape[1:] == self.z_shape[1:]
        self.last_z_shape = z.shape

        # timestep embedding
        temb = None

        # z to block_in
        h = self.conv_in(z)

        # middle
        h = self.mid.block_1(h, temb)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h, temb)

        # upsampling
        for i_level in reversed(range(self.num_resolutions)):
            for i_block in range(self.num_res_blocks+1):
                h = self.up[i_level].block[i_block](h, temb)
                if len(self.up[i_level].attn) > 0:
                    h = self.up[i_level].attn[i_block](h)
            if i_level != 0:
                h = self.up[i_level].upsample(h)

        # end
        if self.give_pre_end:
            return h

        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        if self.tanh_out:
            h = torch.tanh(h)
        return h

3.1.1 model.py 工具类

a.make_beta_schedule
这个方法在之前ddpm就用过,主要作用就是获得betas:

def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
    if schedule == "linear":
        betas = (
                torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
        )

    elif schedule == "cosine":
        timesteps = (
                torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
        )
        alphas = timesteps / (1 + cosine_s) * np.pi / 2
        alphas = torch.cos(alphas).pow(2)
        alphas = alphas / alphas[0]
        betas = 1 - alphas[1:] / alphas[:-1]
        betas = np.clip(betas, a_min=0, a_max=0.999)

    elif schedule == "sqrt_linear":
        betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
    elif schedule == "sqrt":
        betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
    else:
        raise ValueError(f"schedule '{schedule}' unknown.")
    return betas.numpy()

b.make_ddim_timesteps

c.extract_into_tensor
将张量 a 中根据张量 t 中的索引提取的元素按照输入张量 x 的形状进行重新排列,并返回结果

def extract_into_tensor(a, t, x_shape):
    b, *_ = t.shape
    out = a.gather(-1, t)
    return out.reshape(b, *((1,) * (len(x_shape) - 1)))

3.1 encoders文件夹

3.1.1 modules.py

a.BERTTokenizer方法

class BERTTokenizer(AbstractEncoder):
    """ Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
    def __init__(self, device="cuda", vq_interface=True, max_length=77):
        super().__init__()
        #导包
        from transformers import BertTokenizerFast  # TODO: add to reuquirements
        #设置tokenizer已经预训练模型
        self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
        self.device = device
        self.vq_interface = vq_interface
        self.max_length = max_length

    def forward(self, text):
        batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
                                        return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
        #提取token列表
        tokens = batch_encoding["input_ids"].to(self.device)
        return tokens

    @torch.no_grad()
    def encode(self, text):
        tokens = self(text)
        if not self.vq_interface:
            return tokens
        return None, None, [None, None, tokens]

    def decode(self, text):
        return text

b.BERTEmbedder方法
使用BERT tokenizr模型并添加一些transformer编码器层

class BERTEmbedder(AbstractEncoder):
    """“使用BERT tokenizr模型并添加一些transformer编码器层”"""
    def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
                 device="cuda",use_tokenizer=True, embedding_dropout=0.0):
        super().__init__()
        self.use_tknz_fn = use_tokenizer
        if self.use_tknz_fn:
            self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
        self.device = device
        self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
                                              attn_layers=Encoder(dim=n_embed, depth=n_layer),
                                              emb_dropout=embedding_dropout)

    def forward(self, text):
        if self.use_tknz_fn:
            tokens = self.tknz_fn(text)#.to(self.device)
        else:
            tokens = text
        z = self.transformer(tokens, return_embeddings=True)
        return z

    def encode(self, text):
        # output of length 77
        return self(text)

c.FrozenCLIPEmbedder

class FrozenCLIPEmbedder(AbstractEncoder):
    """Uses the CLIP transformer encoder for text (from Hugging Face)"""
    def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77):
        super().__init__()
        self.tokenizer = CLIPTokenizer.from_pretrained(version)
        self.transformer = CLIPTextModel.from_pretrained(version)
        self.device = device
        self.max_length = max_length
        self.freeze()

    def freeze(self):
        self.transformer = self.transformer.eval()
        for param in self.parameters():
            param.requires_grad = False

    def forward(self, text):
        batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
                                        return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
        tokens = batch_encoding["input_ids"].to(self.device)
        outputs = self.transformer(input_ids=tokens)

        z = outputs.last_hidden_state
        return z

    def encode(self, text):
        return self(text)

d.FrozenClipImageEmbedder

class FrozenClipImageEmbedder(nn.Module):
    """
        Uses the CLIP image encoder.
        """
    def __init__(
            self,
            model,
            jit=False,
            device='cuda' if torch.cuda.is_available() else 'cpu',
            antialias=False,
        ):
        super().__init__()
        self.model, _ = clip.load(name=model, device=device, jit=jit)

        self.antialias = antialias

        self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
        self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)

    def preprocess(self, x):
        # normalize to [0,1]
        x = kornia.geometry.resize(x, (224, 224),
                                   interpolation='bicubic',align_corners=True,
                                   antialias=self.antialias)
        x = (x + 1.) / 2.
        # renormalize according to clip
        x = kornia.enhance.normalize(x, self.mean, self.std)
        return x

    def forward(self, x):
        # x is assumed to be in range [-1,1]
        return self.model.encode_image(self.preprocess(x))

3.2.image_degradation文件夹

主要存放一些处理图像的方法,以后用到再总结

3.3.loss文件夹

class LPIPSWithDiscriminator 感知损失:用于度量两张图像之间的差别
cass VQLPIPSWithDiscriminator VQ感知损失

3.4.attention.py

a.GEGLU类

#GELU可以看作dropout的思想和relu的结合,主要是为激活函数引入了随机性使得模型训练过程更加鲁棒
class GEGLU(nn.Module):
    def __init__(self, dim_in, dim_out):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim=-1)
        return x * F.gelu(gate)

b.FeedForward/多层感知机

class FeedForward(nn.Module):
    def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = default(dim_out, dim)
        project_in = nn.Sequential(
            nn.Linear(dim, inner_dim),
            nn.GELU()
        ) if not glu else GEGLU(dim, inner_dim)

        self.net = nn.Sequential(
            project_in,
            nn.Dropout(dropout),
            nn.Linear(inner_dim, dim_out)
        )

    def forward(self, x):
        return self.net(x)

c. LinearAttention类
和普通attention不同的就是去掉softmax,先计算kv,再乘q,降低复杂度

class LinearAttention(nn.Module):
    def __init__(self, dim, heads=4, dim_head=32):
        super().__init__()
        self.heads = heads
        hidden_dim = dim_head * heads
        self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
        self.to_out = nn.Conv2d(hidden_dim, dim, 1)

    def forward(self, x):
        b, c, h, w = x.shape
        qkv = self.to_qkv(x)
        #将b c h w变成三个 b heads c h w维度的张量
        q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
        k = k.softmax(dim=-1)  
        #计算kv
        context = torch.einsum('bhdn,bhen->bhde', k, v)
        #乘q
        out = torch.einsum('bhde,bhdn->bhen', context, q)
        #维度变换
        out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
        #多头合并
        return self.to_out(out)

d.SpatialSelfAttention
一个单头自注意力机制块

class SpatialSelfAttention(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.in_channels = in_channels

        self.norm = Normalize(in_channels)
        self.q = torch.nn.Conv2d(in_channels,
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
        self.k = torch.nn.Conv2d(in_channels,
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
        self.v = torch.nn.Conv2d(in_channels,
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
        self.proj_out = torch.nn.Conv2d(in_channels,
                                        in_channels,
                                        kernel_size=1,
                                        stride=1,
                                        padding=0)

    def forward(self, x):
        h_ = x
        h_ = self.norm(h_)
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)

        # compute attention
        b,c,h,w = q.shape
        q = rearrange(q, 'b c h w -> b (h w) c')
        k = rearrange(k, 'b c h w -> b c (h w)')
        w_ = torch.einsum('bij,bjk->bik', q, k)

        w_ = w_ * (int(c)**(-0.5))
        w_ = torch.nn.functional.softmax(w_, dim=2)

        # attend to values
        v = rearrange(v, 'b c h w -> b c (h w)')
        w_ = rearrange(w_, 'b i j -> b j i')
        h_ = torch.einsum('bij,bjk->bik', v, w_)
        h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
        h_ = self.proj_out(h_)

        return x+h_

d.CrossAttention
多头交叉注意力块

class CrossAttention(nn.Module):
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

        self.scale = dim_head ** -0.5
        self.heads = heads

        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
        self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
        self.to_v = nn.Linear(context_dim, inner_dim, bias=False)

        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, query_dim),
            nn.Dropout(dropout)
        )

    def forward(self, x, context=None, mask=None):
        h = self.heads

        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
        v = self.to_v(context)

        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))

        sim = einsum('b i d, b j d -> b i j', q, k) * self.scale

        if exists(mask):
            mask = rearrange(mask, 'b ... -> b (...)')
            max_neg_value = -torch.finfo(sim.dtype).max
            mask = repeat(mask, 'b j -> (b h) () j', h=h)
            sim.masked_fill_(~mask, max_neg_value)

        # attention, what we cannot get enough of
        attn = sim.softmax(dim=-1)

        out = einsum('b i j, b j d -> b i d', attn, v)
        out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
        return self.to_out(out)

e.BasicTransformerBlock

class BasicTransformerBlock(nn.Module):
    def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True):
        super().__init__()
        self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout)  # is a self-attention
        self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
        self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
                                    heads=n_heads, dim_head=d_head, dropout=dropout)  # is self-attn if context is none
        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)
        self.norm3 = nn.LayerNorm(dim)
        self.checkpoint = checkpoint

    def forward(self, x, context=None):
        return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)

    def _forward(self, x, context=None):
        x = self.attn1(self.norm1(x)) + x
        x = self.attn2(self.norm2(x), context=context) + x
        x = self.ff(self.norm3(x)) + x
        return x

f.SpatialTransformer

class SpatialTransformer(nn.Module):
    """
    Transformer block for image-like data.
    First, project the input (aka embedding)
    and reshape to b, t, d.
    Then apply standard transformer action.
    Finally, reshape to image
    """
    def __init__(self, in_channels, n_heads, d_head,
                 depth=1, dropout=0., context_dim=None):
        super().__init__()
        self.in_channels = in_channels
        inner_dim = n_heads * d_head
        self.norm = Normalize(in_channels)

        self.proj_in = nn.Conv2d(in_channels,
                                 inner_dim,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)

        self.transformer_blocks = nn.ModuleList(
            [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
                for d in range(depth)]
        )

        self.proj_out = zero_module(nn.Conv2d(inner_dim,
                                              in_channels,
                                              kernel_size=1,
                                              stride=1,
                                              padding=0))

    def forward(self, x, context=None):
        # note: if no context is given, cross-attention defaults to self-attention
        b, c, h, w = x.shape
        x_in = x
        x = self.norm(x)
        x = self.proj_in(x)
        x = rearrange(x, 'b c h w -> b (h w) c')
        for block in self.transformer_blocks:
            x = block(x, context=context)
        x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
        x = self.proj_out(x)
        return x + x_in

3.5.ema.py

class LitEma(nn.Module):
    def __init__(self, model, decay=0.9999, use_num_upates=True):
        super().__init__()
        if decay < 0.0 or decay > 1.0:
            raise ValueError('Decay must be between 0 and 1')

        self.m_name2s_name = {
    }
        self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
        #存储模型参数的更新次数
        self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates
                             else torch.tensor(-1,dtype=torch.int))
        #遍历传入模型的所有参数
        for name, p in model.named_parameters():
            #检查参数是否需要梯度
            if p.requires_grad:
                #remove as '.'-character is not allowed in buffers
                #将参数名中的点('.')替换为空字符串,因为点字符在缓冲区的名称中不被允许
                s_name = name.replace('.','')
                #将模型参数名和对应的EMA参数名添加到m_name2s_name字典中
                self.m_name2s_name.update({
    name:s_name})
                #储模型参数的克隆数据,该数据在计算EMA时会用到
                self.register_buffer(s_name,p.clone().detach().data)
        #用于存储收集到的参数
        self.collected_params = []
    #公式: EMA_t = decay*EMA_t-1 + (1-decay)*w_t
    def forward(self,model):
        decay = self.decay

        if self.num_updates >= 0:
            self.num_updates += 1
            #更新衰减系数,确保其不超过上限。
            decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates))
        #计算EMA更新时的权重 也就是w之前的那个(1-decay)
        one_minus_decay = 1.0 - decay

        with torch.no_grad():
            #获取传入模型的所有参数,并将其转换为字典
            m_param = dict(model.named_parameters())
            shadow_params = dict(self.named_buffers())

            for key in m_param:
                if m_param[key].requires_grad:
                    #计算EMA参数的更新
                    sname = self.m_name2s_name[key]
                    shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
                    shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
                else:
                    assert not key in self.m_name2s_name

    def copy_to(self, model):
        m_param = dict(model.named_parameters())
        shadow_params = dict(self.named_buffers())
        for key in m_param:
            if m_param[key].requires_grad:
                m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
            else:
                assert not key in self.m_name2s_name

3.6.embedding_manager.py

根据string获得token进而获得embedding

#一个进行embedding的类
"""
embedder 嵌入器
placeholder_strings 标记的字符串列表
initializer_words 初始嵌入的单词列表
num_vectors_per_token 每个标记的嵌入向量数
"""
class EmbeddingManager(nn.Module):
    def __init__(
            self,
            embedder,
            placeholder_strings=None,
            initializer_words=None,
            per_image_tokens=False,
            num_vectors_per_token=1,
            progressive_words=False,
            **kwargs
    ):
        super().__init__()
        #存储字符串到标记的映射
        self.string_to_token_dict = {
    }
        #存储字符串到参数的映射
        self.string_to_param_dict = nn.ParameterDict()
        #用于存储初始化的嵌入,不会被优化
        self.initial_embeddings = nn.ParameterDict() # These should not be optimized

        self.progressive_words = progressive_words
        self.progressive_counter = 0

        self.max_vectors_per_token = num_vectors_per_token

        #使用clip encoder
        if hasattr(embedder, 'tokenizer'): # using Stable Diffusion's CLIP encoder
            self.is_clip = True
            #选择相应的函数来获取字符串的token和标记的embedding
            get_token_for_string = partial(get_clip_token_for_string, embedder.tokenizer)
            get_embedding_for_tkn = partial(get_embedding_for_clip_token, embedder.transformer.text_model.embeddings)
            token_dim = 768
        else: # using LDM's BERT encoder
            self.is_clip = False
            get_token_for_string = partial(get_bert_token_for_string, embedder.tknz_fn)
            get_embedding_for_tkn = embedder.transformer.token_emb
            token_dim = 1280

        if per_image_tokens:
            placeholder_strings.extend(per_img_token_list)
        #对于 placeholder_strings 中的每个占位符字符串
        for idx, placeholder_string in enumerate(placeholder_strings):
            #获取token
            token = get_token_for_string(placeholder_string)
            #如果存在初始化单词或者索引小于初始化单词长度
            if initializer_words and idx < len(initializer_words):
                #获取相应索引处的初始化单词的token
                init_word_token = get_token_for_string(initializer_words[idx])
                #获取embedding
                with torch.no_grad():
                    init_word_embedding = get_embedding_for_tkn(init_word_token.cpu())
                #为初始化单词的嵌入向量创建参数,并设置为可训练的(requires_grad=True)
                token_params = torch.nn.Parameter(init_word_embedding.unsqueeze(0).repeat(num_vectors_per_token, 1), requires_grad=True)
                #将初始化单词的嵌入向量存储到self.initial_embeddings中,但这个向量的参数不可训练(requires_grad=False)。
                self.initial_embeddings[placeholder_string] = torch.nn.Parameter(init_word_embedding.unsqueeze(0).repeat(num_vectors_per_token, 1), requires_grad=False)
            else:
                #为当前占位符字符串创建一个随机初始化的参数,并设置为可训练的(requires_grad=True)
                token_params = torch.nn.Parameter(torch.rand(size=(num_vectors_per_token, token_dim), requires_grad=True))
            #将占位符字符串与其对应的标记token存储到self.string_to_token_dict字典中
            self.string_to_token_dict[placeholder_string] = token
            #将占位符字符串与其对应的参数token_params存储到self.string_to_param_dict字典中
            self.string_to_param_dict[placeholder_string] = token_params

    def forward(
            self,
            tokenized_text,
            embedded_text,
    ):
        b, n, device = *tokenized_text.shape, tokenized_text.device

        #对字符串到token的字典进行循环迭代
        for placeholder_string, placeholder_token in self.string_to_token_dict.items():
            #embedding
            placeholder_embedding = self.string_to_param_dict[placeholder_string].to(device)
            #检查是否每个 token 只有一个嵌入向量。如果是,则直接通过 torch.where 找到占位符在 tokenized_text 中的位置,并将对应的嵌入向量替换原文本中的值
            if self.max_vectors_per_token == 1: # If there's only one vector per token, we can do a simple replacement
                placeholder_idx = torch.where(tokenized_text == placeholder_token.to(device))
                #将embedding存入embedded_text
                embedded_text[placeholder_idx] = placeholder_embedding
            else: # otherwise, need to insert and keep track of changing indices
                if self.progressive_words:
                    self.progressive_counter += 1
                    max_step_tokens = 1 + self.progressive_counter // PROGRESSIVE_SCALE
                else:
                    max_step_tokens = self.max_vectors_per_token

                num_vectors_for_token = min(placeholder_embedding.shape[0], max_step_tokens)

                placeholder_rows, placeholder_cols = torch.where(tokenized_text == placeholder_token.to(device))

                if placeholder_rows.nelement() == 0:
                    continue

                sorted_cols, sort_idx = torch.sort(placeholder_cols, descending=True)
                sorted_rows = placeholder_rows[sort_idx]

                for idx in range(len(sorted_rows)):
                    row = sorted_rows[idx]
                    col = sorted_cols[idx]

                    new_token_row = torch.cat([tokenized_text[row][:col], placeholder_token.repeat(num_vectors_for_token).to(device), tokenized_text[row][col + 1:]], axis=0)[:n]
                    new_embed_row = torch.cat([embedded_text[row][:col], placeholder_embedding[:num_vectors_for_token], embedded_text[row][col + 1:]], axis=0)[:n]

                    embedded_text[row]  = new_embed_row
                    tokenized_text[row] = new_token_row

        return embedded_text

4 utils.py文件

定义了一些处理图像的工具方法

5 lr_scheduler.py文件

定义了些动态调整学习率的类

#在训练过程中根据给定的步数动态调整学习率,采用预热和余弦衰减的策略,以更好地训练深度学习模型
class LambdaWarmUpCosineScheduler:
    """
    note: use with a base_lr of 1.0
    warm_up_steps:学习率预热所需的步数
    max_decay_steps:最大的衰减步数
    verbosity_interval:打印日志信息的间隔步数,默认为0(不打印)
    """
    def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
        self.lr_warm_up_steps = warm_up_steps
        self.lr_start = lr_start
        self.lr_min = lr_min
        self.lr_max = lr_max
        self.lr_max_decay_steps = max_decay_steps
        self.last_lr = 0.
        self.verbosity_interval = verbosity_interval
    """
    schedule 方法用于计算给定步数n对应的学习率值,主要包含两个阶段:
    预热阶段:当步数n小于预热步数时,采用线性方式逐步增加学习率。
    衰减阶段:步数超过预热步数后,根据余弦函数的变化模式动态调整学习率。
    """
    def schedule(self, n, **kwargs):
        if self.verbosity_interval > 0:
            if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
        if n < self.lr_warm_up_steps:
            lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
            self.last_lr = lr
            return lr
        else:
            t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
            t = min(t, 1.0)
            lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
                    1 + np.cos(t * np.pi))
            self.last_lr = lr
            return lr

    def __call__(self, n, **kwargs):
        return self.schedule(n,**kwargs)

#在训练过程中根据给定的步数动态调整学习率,与前一个类相比,这个类增加了对重复迭代的支持,并通过列表进行配置
class LambdaWarmUpCosineScheduler2:
    """
    supports repeated iterations, configurable via lists
    note: use with a base_lr of 1.0.
    cycle_lengths:每个循环(cycle)的步数列表
    """
    def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
        assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
        self.lr_warm_up_steps = warm_up_steps
        self.f_start = f_start
        self.f_min = f_min
        self.f_max = f_max
        self.cycle_lengths = cycle_lengths
        self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
        self.last_f = 0.
        self.verbosity_interval = verbosity_interval

    # find_in_interval 方法用于确定给定步数 n 在哪个循环(cycle)的区间内。
    def find_in_interval(self, n):
        interval = 0
        for cl in self.cum_cycles[1:]:
            if n <= cl:
                return interval
            interval += 1
    """
    schedule 方法用于计算给定步数n对应的学习率值,主要包含两个阶段:
    预热阶段:当步数n小于当前循环的预热步数时,采用线性方式逐步增加学习率。
    衰减阶段:步数超过当前循环的预热步数后,根据余弦函数的变化模式动态调整学习率。
    """
    def schedule(self, n, **kwargs):
        cycle = self.find_in_interval(n)
        n = n - self.cum_cycles[cycle]
        if self.verbosity_interval > 0:
            if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
                                                       f"current cycle {cycle}")
        if n < self.lr_warm_up_steps[cycle]:
            f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
            self.last_f = f
            return f
        else:
            t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
            t = min(t, 1.0)
            f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
                    1 + np.cos(t * np.pi))
            self.last_f = f
            return f

    def __call__(self, n, **kwargs):
        return self.schedule(n, **kwargs)

#线性调整学习率
class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):

    def schedule(self, n, **kwargs):
        #首先,通过调用父类的 find_in_interval 方法确定当前步数 n 所在的循环(cycle)
        cycle = self.find_in_interval(n)
        #接着,计算相对于当前循环的步数 n
        n = n - self.cum_cycles[cycle]
        #如果 n 小于当前循环的预热步数,使用线性方式逐步增加学习率,这与父类中的预热阶段逻辑相同
        if self.verbosity_interval > 0:
            if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
                                                       f"current cycle {cycle}")
        #如果 n 大于等于当前循环的预热步数,则采用线性方式逐步减小学习率,直到当前循环结束。具体的计算方式为:f_min + (f_max - f_min) * (cycle_lengths - n) / cycle_lengths
        if n < self.lr_warm_up_steps[cycle]:
            f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
            self.last_f = f
            return f
        else:
            f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
            self.last_f = f
            return f

二 scripts文件夹

txt2img.py文件

仅展示重要代码

    #加载模型配置
    config = OmegaConf.load(f"{opt.config}")
    #加载参数
    model = load_model_from_config(config, f"{opt.ckpt}")

    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model = model.to(device)
    #选择采样策略
    if opt.dpm_solver:
        sampler = DPMSolverSampler(model)
    elif opt.plms:
        sampler = PLMSSampler(model)
    else:
        sampler = DDIMSampler(model)

    os.makedirs(opt.outdir, exist_ok=True)
    outpath = opt.outdir

    print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
    wm = "StableDiffusionV1"
    wm_encoder = WatermarkEncoder()
    wm_encoder.set_watermark('bytes', wm.encode('utf-8'))

    batch_size = opt.n_samples
    n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
    #加载提示
    if not opt.from_file:
        prompt = opt.prompt
        assert prompt is not None
        data = [batch_size * [prompt]]
    else:
        print(f"reading prompts from {opt.from_file}")
        with open(opt.from_file, "r") as f:
            data = f.read().splitlines()
            data = list(chunk(data, batch_size))
    #设置采样输出目录
    sample_path = os.path.join(outpath, "samples")
    os.makedirs(sample_path, exist_ok=True)
    base_count = len(os.listdir(sample_path))
    grid_count = len(os.listdir(outpath)) - 1

    start_code = None
    if opt.fixed_code:
        start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)

    precision_scope = autocast if opt.precision=="autocast" else nullcontext
    with torch.no_grad():
        with precision_scope("cuda"):
            #启用指数移动平均(EMA)
            with model.ema_scope():
                tic = time.time()
                all_samples = list()
                for n in trange(opt.n_iter, desc="Sampling"):
                    for prompts in tqdm(data, desc="data"):
                        uc = None
                        if opt.scale != 1.0:
                            #使用模型的方法获取学习到的条件(conditioning),这里使用一个空的条件进行演示
                            uc = model.get_learned_conditioning(batch_size * [""])
                        #如果提示(prompts)是一个元组,将其转换为列表
                        if isinstance(prompts, tuple):
                            prompts = list(prompts)
                        #对提示编码
                        c = model.get_learned_conditioning(prompts)
                        shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
                        #使用采样器(sampler)生成一些样本,具体的采样过程包括了条件、形状等参数
                        samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
                                                         conditioning=c,
                                                         batch_size=opt.n_samples,
                                                         shape=shape,
                                                         verbose=False,
                                                         unconditional_guidance_scale=opt.scale,
                                                         unconditional_conditioning=uc,
                                                         eta=opt.ddim_eta,
                                                         x_T=start_code)
                        #对采样结果解码
                        x_samples_ddim = model.decode_first_stage(samples_ddim)
                        #对解码后的样本进行限制,确保像素值在 [0, 1] 范围内
                        x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
                        #将样本移到 CPU,调整维度的顺序,转换为 NumPy 数组
                        x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()

                        x_checked_image, has_nsfw_concept = check_safety(x_samples_ddim)
                        #将检查后的图像转换为 PyTorch 张量,并调整维度的顺序
                        x_checked_image_torch = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2)
                        #如果不跳过保存操作,保存图像
                        if not opt.skip_save:
                            for x_sample in x_checked_image_torch:
                                x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
                                img = Image.fromarray(x_sample.astype(np.uint8))
                                img = put_watermark(img, wm_encoder)
                                img.save(os.path.join(sample_path, f"{base_count:05}.png"))
                                base_count += 1

                        if not opt.skip_grid:
                            all_samples.append(x_checked_image_torch)
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/lihao1875699404/article/details/134341509

智能推荐

攻防世界_难度8_happy_puzzle_攻防世界困难模式攻略图文-程序员宅基地

文章浏览阅读645次。这个肯定是末尾的IDAT了,因为IDAT必须要满了才会开始一下个IDAT,这个明显就是末尾的IDAT了。,对应下面的create_head()代码。,对应下面的create_tail()代码。不要考虑爆破,我已经试了一下,太多情况了。题目来源:UNCTF。_攻防世界困难模式攻略图文

达梦数据库的导出(备份)、导入_达梦数据库导入导出-程序员宅基地

文章浏览阅读2.9k次,点赞3次,收藏10次。偶尔会用到,记录、分享。1. 数据库导出1.1 切换到dmdba用户su - dmdba1.2 进入达梦数据库安装路径的bin目录,执行导库操作  导出语句:./dexp cwy_init/[email protected]:5236 file=cwy_init.dmp log=cwy_init_exp.log 注释:   cwy_init/init_123..._达梦数据库导入导出

js引入kindeditor富文本编辑器的使用_kindeditor.js-程序员宅基地

文章浏览阅读1.9k次。1. 在官网上下载KindEditor文件,可以删掉不需要要到的jsp,asp,asp.net和php文件夹。接着把文件夹放到项目文件目录下。2. 修改html文件,在页面引入js文件:<script type="text/javascript" src="./kindeditor/kindeditor-all.js"></script><script type="text/javascript" src="./kindeditor/lang/zh-CN.js"_kindeditor.js

STM32学习过程记录11——基于STM32G431CBU6硬件SPI+DMA的高效WS2812B控制方法-程序员宅基地

文章浏览阅读2.3k次,点赞6次,收藏14次。SPI的详情简介不必赘述。假设我们通过SPI发送0xAA,我们的数据线就会变为10101010,通过修改不同的内容,即可修改SPI中0和1的持续时间。比如0xF0即为前半周期为高电平,后半周期为低电平的状态。在SPI的通信模式中,CPHA配置会影响该实验,下图展示了不同采样位置的SPI时序图[1]。CPOL = 0,CPHA = 1:CLK空闲状态 = 低电平,数据在下降沿采样,并在上升沿移出CPOL = 0,CPHA = 0:CLK空闲状态 = 低电平,数据在上升沿采样,并在下降沿移出。_stm32g431cbu6

计算机网络-数据链路层_接收方收到链路层数据后,使用crc检验后,余数为0,说明链路层的传输时可靠传输-程序员宅基地

文章浏览阅读1.2k次,点赞2次,收藏8次。数据链路层习题自测问题1.数据链路(即逻辑链路)与链路(即物理链路)有何区别?“电路接通了”与”数据链路接通了”的区别何在?2.数据链路层中的链路控制包括哪些功能?试讨论数据链路层做成可靠的链路层有哪些优点和缺点。3.网络适配器的作用是什么?网络适配器工作在哪一层?4.数据链路层的三个基本问题(帧定界、透明传输和差错检测)为什么都必须加以解决?5.如果在数据链路层不进行帧定界,会发生什么问题?6.PPP协议的主要特点是什么?为什么PPP不使用帧的编号?PPP适用于什么情况?为什么PPP协议不_接收方收到链路层数据后,使用crc检验后,余数为0,说明链路层的传输时可靠传输

软件测试工程师移民加拿大_无证移民,未受过软件工程师的教育(第1部分)-程序员宅基地

文章浏览阅读587次。软件测试工程师移民加拿大 无证移民,未受过软件工程师的教育(第1部分) (Undocumented Immigrant With No Education to Software Engineer(Part 1))Before I start, I want you to please bear with me on the way I write, I have very little gen...

随便推点

Thinkpad X250 secure boot failed 启动失败问题解决_安装完系统提示secureboot failure-程序员宅基地

文章浏览阅读304次。Thinkpad X250笔记本电脑,装的是FreeBSD,进入BIOS修改虚拟化配置(其后可能是误设置了安全开机),保存退出后系统无法启动,显示:secure boot failed ,把自己惊出一身冷汗,因为这台笔记本刚好还没开始做备份.....根据错误提示,到bios里面去找相关配置,在Security里面找到了Secure Boot选项,发现果然被设置为Enabled,将其修改为Disabled ,再开机,终于正常启动了。_安装完系统提示secureboot failure

C++如何做字符串分割(5种方法)_c++ 字符串分割-程序员宅基地

文章浏览阅读10w+次,点赞93次,收藏352次。1、用strtok函数进行字符串分割原型: char *strtok(char *str, const char *delim);功能:分解字符串为一组字符串。参数说明:str为要分解的字符串,delim为分隔符字符串。返回值:从str开头开始的一个个被分割的串。当没有被分割的串时则返回NULL。其它:strtok函数线程不安全,可以使用strtok_r替代。示例://借助strtok实现split#include <string.h>#include <stdio.h&_c++ 字符串分割

2013第四届蓝桥杯 C/C++本科A组 真题答案解析_2013年第四届c a组蓝桥杯省赛真题解答-程序员宅基地

文章浏览阅读2.3k次。1 .高斯日记 大数学家高斯有个好习惯:无论如何都要记日记。他的日记有个与众不同的地方,他从不注明年月日,而是用一个整数代替,比如:4210后来人们知道,那个整数就是日期,它表示那一天是高斯出生后的第几天。这或许也是个好习惯,它时时刻刻提醒着主人:日子又过去一天,还有多少时光可以用于浪费呢?高斯出生于:1777年4月30日。在高斯发现的一个重要定理的日记_2013年第四届c a组蓝桥杯省赛真题解答

基于供需算法优化的核极限学习机(KELM)分类算法-程序员宅基地

文章浏览阅读851次,点赞17次,收藏22次。摘要:本文利用供需算法对核极限学习机(KELM)进行优化,并用于分类。

metasploitable2渗透测试_metasploitable2怎么进入-程序员宅基地

文章浏览阅读1.1k次。一、系统弱密码登录1、在kali上执行命令行telnet 192.168.26.1292、Login和password都输入msfadmin3、登录成功,进入系统4、测试如下:二、MySQL弱密码登录:1、在kali上执行mysql –h 192.168.26.129 –u root2、登录成功,进入MySQL系统3、测试效果:三、PostgreSQL弱密码登录1、在Kali上执行psql -h 192.168.26.129 –U post..._metasploitable2怎么进入

Python学习之路:从入门到精通的指南_python人工智能开发从入门到精通pdf-程序员宅基地

文章浏览阅读257次。本文将为初学者提供Python学习的详细指南,从Python的历史、基础语法和数据类型到面向对象编程、模块和库的使用。通过本文,您将能够掌握Python编程的核心概念,为今后的编程学习和实践打下坚实基础。_python人工智能开发从入门到精通pdf

推荐文章

热门文章

相关标签