操作系统进程调度算法(c语言模拟实现)_操作系统原理实验进程调度模拟c语言代码-程序员宅基地

技术标签: 算法  进程  c语言及其进阶  c语言  操作系统  进程调度算法  数据结构  

        前言:本文旨在分享如何使用c语言对操作系统中的部分进程调度算法进行模拟实现,以及算法描述的讲解,完整代码放在文章末尾,欢迎大家自行拷贝调用

目录

常见的调度算法

数据结构

先来先服务调度算法

算法模拟思路:

算法模拟: 

最短作业优先调度算法

算法模拟思路:

算法模拟:

 最高优先级调度算法

算法模拟思路:

算法模拟:

 时间片轮转调度算法

算法模拟思路:

算法模拟: 

完整代码:

 course.h: 

course.cpp:

test.cpp: 


常见的调度算法

  • 先来先服务调度算法
  • 最短作业优先调度算法
  • 高响应比优先调度算法
  • 最高优先级调度算法
  • 时间片轮转调度算法
  • 多级反馈队列调度算法
  • ... ...

数据结构

typedef struct program
{
	char name[20];
	int running_time;
	int enter_time;
	int priority;
	int done_time;			//用于时间片轮转
	int copyRunning_time;   //用于时间片轮转
	int start_time;
	program* next;
} Program;

typedef struct programQueue
{
	program* firstProg;
	program* LastProg;
	int size;
} programQueue;

先来先服务调度算法

        顾名思义,先来后到,每次从就绪队列选择最先进入队列的进程,然后一直运行,直到进程退出或被阻塞,才会继续从队列中选择第一个进程接着运行。但是当一个长作业先运行了,那么后面的短作业等待的时间就会很长,不利于短作业。FCFS 对长作业有利,适用于 CPU 繁忙型作业的系统,而不适用于 I/O 繁忙型作业的系统。

算法模拟思路:

  1. 首先将输入的进程放入一个进程数组中,然后根据进程的到达时间进行排序,将最先到达的进程放入进程就绪队列中。
  2. 当队列不空时,从队头取出一个进程来执行,直至此进程执行完,并将在此进程执行期间到达的进程依次加入进程就绪队列。
  3. 如果队列为空,但进程数组中仍存在未到达的进程,这时将要到达进程加入进程就绪队列。

算法模拟: 

//FCFS先来先服务算法
void FCFS(program pro[], int num)
{
	printf("进程 到达时间  服务时间 开始时间 完成时间 周转时间 带权周转时间\n");
	sortWithEnterTime(pro, num);    //按照进入顺序排序 
	programQueue* queue = (programQueue*)malloc(sizeof(programQueue));
	Queueinit(queue);
	EnterQueue(queue, &pro[0]);
	int time = pro[0].enter_time;
	int pronum = 1;    //记录当前的进程 
	float sum_T_time = 0, sum_QT_time = 0;
	while (queue->size > 0)
	{
		program* curpro = poll(queue);   //从进程队列中取出进程 
		if (time < curpro->enter_time)
			time = curpro->enter_time;
		int done_time = time + curpro->running_time;
		int T_time = done_time - curpro->enter_time;
		sum_T_time += T_time;
		float QT_time = T_time / (curpro->running_time + 0.0);
		sum_QT_time += QT_time;
		for (int tt = time; tt <= done_time && pronum < num; tt++)
		{
			//模拟进程的执行过程 
			if (tt >= pro[pronum].enter_time)
			{
				EnterQueue(queue, &pro[pronum]);
				pronum++;
			}
		}
		printf("%s\t%d\t%d\t%d\t%d\t%d\t%.2f\n", curpro->name, curpro->enter_time, curpro->running_time, time, done_time, T_time, QT_time);
		time += curpro->running_time;
		if (queue->size == 0 && pronum < num)
		{
			//防止出现前一个进程执行完到下一个进程到达之间无进程进入 
			EnterQueue(queue, &pro[pronum]);
			pronum++;
		}
	}
	printf("平均周转时间为%.2f\t平均带权周转时间为%.2f\n", sum_T_time / (num + 0.0), sum_QT_time / (num + 0.0));
}

最短作业优先调度算法

        最短作业优先调度算法会优先选择运行时间最短的进程来运行,这有助于提高系统的吞吐量。这显然对长作业不利,很容易造成一种极端现象。比如,一个长作业在就绪队列等待运行,而这个就绪队列有非常多的短作业,那么就会使得长作业不断的往后推,周转时间变长,致使长作业长期不会被运行。

算法模拟思路:

  1. 首先也是按进程的到达时间进行排序。让最先到达的进程入队。
  2. 当队列不空时,从队头取出一个进程来执行,直至此进程执行完,设置一个变量记录此进程执行过程中所有到达的进程。
  3. 将这些到达的进程进行排序,按照进程服务时间的大小。然后将排序好的进程数组中的进程依次加入进程队列。(只排当前进程执行期间到达的进程)
  4. 此时也要考虑如果队列为空,但进程数组中仍存在未到达的进程,这时将要到达进程加入进程就绪队列。

算法模拟:

//短作业优先算法
void SJF(program pro[], int num)
{
	printf("进程 到达时间  服务时间 开始时间 完成时间 周转时间 带权周转时间\n");
	sortWithEnterTime(pro, num);
	programQueue* queue = (programQueue*)malloc(sizeof(programQueue));
	Queueinit(queue);
	EnterQueue(queue, &pro[0]);
	int time = pro[0].enter_time;
	int pronum = 1;    //记录当前的进程 
	float sum_T_time = 0, sum_QT_time = 0;
	while (queue->size > 0)
	{
		program* curpro = poll(queue);   //从进程队列中取出进程 
		if (time < curpro->enter_time)
			time = curpro->enter_time;
		int done_time = time + curpro->running_time;
		int T_time = done_time - curpro->enter_time;
		float QT_time = T_time / (curpro->running_time + 0.0);
		sum_T_time += T_time;
		sum_QT_time += QT_time;
		int pre = pronum;
		for (int tt = time; tt <= done_time && pronum < num; tt++)
		{
			//模拟进程的执行过程 
			if (tt >= pro[pronum].enter_time)
			{
				// 统计从此任务开始到结束之间有几个进程到达 
				pronum++;
			}
		}
		sortWithLongth(pro, pre, pronum);//将到达的进程按照服务时间排序
		for (int i = pre; i < pronum; i++)
		{
			//将进程链入队列 
			EnterQueue(queue, &pro[i]);
		}
		pre = pronum;
		printf("%s\t%d\t%d\t%d\t%d\t%d\t%.2f\n", curpro->name, curpro->enter_time, curpro->running_time, time, done_time, T_time, QT_time);
		time += curpro->running_time;
		if (queue->size == 0 && pronum < num)
		{
			//防止出现前一个进程执行完到下一个进程到达之间无进程进入 
			EnterQueue(queue, &pro[pronum]);
			pronum++;
		}
	}
	printf("平均周转时间为%.2f\t平均带权周转时间为%.2f\n", sum_T_time / (num + 0.0), sum_QT_time / num);
}

 最高优先级调度算法

进程的优先级可以分为,静态优先级或动态优先级:

  • 静态优先级创建进程时候,就已经确定了优先级了,然后整个运行时间优先级都不会变化;
  • 动态优先级根据进程的动态变化调整优先级,比如如果进程运行时间增加,则降低其优先级,如果进程等待时间(就绪队列的等待时间)增加,则升高其优先级,也就是随着时间的推移增加等待进程的优先级。

该算法也有两种处理优先级高的方法,非抢占式和抢占式:

  • 非抢占式:当就绪队列中出现优先级高的进程,运行完当前进程,再选择优先级高的进程。
  • 抢占式:当就绪队列中出现优先级高的进程,当前进程挂起,调度优先级高的进程运行。

但是依然有缺点,可能会导致低优先级的进程永远不会运行

算法模拟思路:

  1. 首先也是按进程的到达时间进行排序。让最先到达的进程入队。
  2. 当队列不空时,从队头取出一个进程来执行,直至此进程执行完,设置一个变量记录此进程执行过程中所有到达的进程。
  3. 将这些到达的进程进行排序,按照进程优先权排序(权值小的先入)。然后将排序好的进程数组中的进程依次加入进程队列。(只排当前进程执行期间到达的进程)
  4. 此时也要考虑如果队列为空,但进程数组中仍存在未到达的进程,这时将要到达进程加入进程就绪队列。

算法模拟:

//优先权高者优先(HPF)
void HPF(program pro[], int num)
{
	printf("进程 到达时间  服务时间 开始时间 完成时间 周转时间 带权周转时间\n");
	sortWithEnterTime(pro, num);
	programQueue* queue = (programQueue*)malloc(sizeof(programQueue));
	Queueinit(queue);
	EnterQueue(queue, &pro[0]);
	int time = pro[0].enter_time;
	int pronum = 1;    //记录当前的进程 
	float sum_T_time = 0, sum_QT_time = 0;
	while (queue->size > 0)
	{
		program* curpro = poll(queue);   //从进程队列中取出进程 
		if (time < curpro->enter_time)
			time = curpro->enter_time;
		int done_time = time + curpro->running_time;
		int T_time = done_time - curpro->enter_time;
		float QT_time = T_time / (curpro->running_time + 0.0);
		sum_T_time += T_time;
		sum_QT_time += QT_time;
		int pre = pronum;
		for (int tt = time; tt <= done_time && pronum < num; tt++)
		{
			//模拟进程的执行过程 
			if (tt >= pro[pronum].enter_time)
			{
				// 统计从此任务开始到结束之间有几个进程到达 
				pronum++;
			}
		}
		sortWithPriority(pro, pre, pronum);//将到达的进程按照服务时间排序
		for (int i = pre; i < pronum; i++)
		{
			//将进程链入队列 
			EnterQueue(queue, &pro[i]);
		}
		pre = pronum;
		printf("%s\t%d\t%d\t%d\t%d\t%d\t%.2f\n", curpro->name, curpro->enter_time, curpro->running_time, time, done_time, T_time, QT_time);
		time += curpro->running_time;
		if (queue->size == 0 && pronum < num)
		{
			//防止出现前一个进程执行完到下一个进程到达之间无进程进入 
			EnterQueue(queue, &pro[pronum]);
			pronum++;
		}
	}
	printf("平均周转时间为%.2f\t平均带权周转时间为%.2f\n", sum_T_time / (num + 0.0), sum_QT_time / (num + 0.0));
}

 时间片轮转调度算法

        每个进程被分配一个时间段,称为时间片,即允许该进程在该时间段中运行。如果时间片用完,进程还在运行,那么将会把此进程从 CPU 释放出来,并把 CPU 分配另外一个进程;如果该进程在时间片结束前阻塞或结束,则 CPU 立即进行切换;如果时间片设得太短会导致过多的进程上下文切换,降低了 CPU 效率;如果设得太长又可能引起对短作业进程的响应时间变长。

算法模拟思路:

  1. 首先也是按进程的到达时间进行排序。让最先到达的进程入队。
  2. 当队列不空时,从队头取出一个进程来执行。此时分两种情况:①如果当前进程的剩余服务时间不大于时间片大小,说明此次将会将这个进程执 行完毕,在此进程执行过程中到达的进程需要添加到进程就绪队列中,这时就可以输出 此进程执行完毕②如果当前进程的剩余服务时间大于时间片大小,还需将此进程执行过程中到达 的进程需要添加到进程就绪队列中,然后此进程的剩余服务时间减少时间片大小,此进 程重新进入进程就绪队列
  3. 此时也要考虑如果队列为空,但进程数组中仍存在未到达的进程,这时将要到达进程加入进程就绪队列

算法模拟: 

//时间片轮转(RR)
void RR(program pro[], int num)
{
	printf("请输入时间片大小");
	int timeslice; scanf("%d", &timeslice);
	printf("进程 到达时间  服务时间 进入时间 完成时间 周转时间 带权周转时间\n");
	sortWithEnterTime(pro, num);
	programQueue* queue = (programQueue*)malloc(sizeof(programQueue));
	Queueinit(queue);
	pro[0].start_time = pro[0].enter_time;
	EnterQueue(queue, &pro[0]);
	int time = 0;
	int pronum = 1;
	float sum_T_time = 0, sum_QT_time = 0;
	while (queue->size > 0)
	{
		program* curpro = poll(queue);    // 从队列中取出头节点 
		if (time < curpro->enter_time)
			time = curpro->enter_time;
		if (timeslice >= curpro->running_time)
		{
			// 如果剩余时间小于时间片  则此任务完成
			for (int tt = time; tt <= time + curpro->running_time && pronum < num; tt++)
			{
				// 模拟进程的执行过程 
				if (tt >= pro[pronum].enter_time)
				{
					// 统计从此任务开始到结束之间有几个进程到达 
					pro[pronum].start_time = tt;
					EnterQueue(queue, &pro[pronum]);
					pronum++;
				}
			}
			time += curpro->running_time;
			curpro->running_time = 0;
			curpro->done_time = time;
			int T_time = curpro->done_time - curpro->start_time;
			float QT_time = T_time / (curpro->copyRunning_time + 0.0);
			sum_T_time += T_time;
			sum_QT_time += QT_time;
			printf("%s\t%d\t%d\t  %d\t   %d\t %d\t  %.2f\n", curpro->name, curpro->enter_time, curpro->copyRunning_time,
				curpro->start_time, curpro->done_time, T_time, QT_time);
			if (queue->size == 0 && pronum < num)
			{
				//防止出现前一个进程执行完到下一个进程到达之间无进程进入 
				pro[pronum].start_time = pro[pronum].enter_time;
				EnterQueue(queue, &pro[pronum]);
				pronum++;
			}
			continue;
		}
		for (int tt = time; tt <= time + timeslice && pronum < num; tt++)
		{
			//模拟进程的执行过程 
			if (tt >= pro[pronum].enter_time)
			{
				// 统计从此任务开始到结束之间有几个进程到达 
				pro[pronum].start_time = tt;
				EnterQueue(queue, &pro[pronum]);
				pronum++;
			}
		}
		time += timeslice;
		curpro->running_time -= timeslice;
		EnterQueue(queue, curpro);    //当前程序未完成  继续添加到队列中 
		if (queue->size == 0 && pronum < num)
		{
			//防止出现前一个进程执行完到下一个进程到达之间无进程进入 
			pro[pronum].start_time = pro[pronum].enter_time;
			EnterQueue(queue, &pro[pronum]);
			pronum++;
		}
	}
	printf("平均周转时间为%.2f\t平均带权周转时间为%.2f\n\n", sum_T_time / (num + 0.0), sum_QT_time / (num + 0.0));
}

完整代码:

我们分三个文件进行操作,当然大家也可以把三个文件按顺序放在一个文件里面进行操作

course.h:      结构体的包含以及函数的声明

course.cpp:  函数的具体实现

test.cpp:       主函数用于调用其余文件函数

 course.h: 

#pragma once
#define _CRT_SECURE_NO_WARNINGS 1

#include<stdio.h>
#include<malloc.h>
#include<string.h> 
#include<stdlib.h>

typedef struct program
{
	char name[20];
	int running_time;
	int enter_time;
	int priority;
	int done_time;			//用于时间片轮转
	int copyRunning_time;   //用于时间片轮转
	int start_time;
	program* next;
} Program;

typedef struct programQueue
{
	program* firstProg;
	program* LastProg;
	int size;
} programQueue;

//初始化
void Queueinit(programQueue* queue);

//打印
void print(program pro[], int num);

//打印队列
void printQueue(programQueue* queue);

//加入进程队列 
void EnterQueue(programQueue* queue, program* pro);

//查询
program* poll(programQueue* queue);

//输入
void inputProgram(program pro[], int num);

//根据时间排序
void sortWithEnterTime(program pro[], int num);

//FCFS先来先服务算法
void FCFS(program pro[], int num);

//根据长度排序
void sortWithLongth(program pro[], int start, int end);

//短作业优先算法
void SJF(program pro[], int num);

//根据优先级排列
void sortWithPriority(program pro[], int start, int end);

//优先权高者优先(HPF)
void HPF(program pro[], int num);

//时间片轮转(RR)
void RR(program pro[], int num);

//选择菜单
void choiceMenu();

course.cpp:

#define _CRT_SECURE_NO_WARNINGS 1
#include "course.h"

//初始化
void Queueinit(programQueue* queue)
{
	if (queue == NULL)
	{
		return;
	}
	queue->size = 0;
	queue->LastProg = (program*)malloc(sizeof(program));
	queue->firstProg = queue->LastProg;
}

//打印
void print(program pro[], int num)
{
	for (int i = 0; i < num; i++)
	{
		printf("%d ", pro[i].enter_time);
	}
}

//打印输出队列
void printQueue(programQueue* queue)
{
	program* p = queue->firstProg->next;
	while (p != NULL)
	{
		printf("%s ", p->name);
		p = p->next;
	}
	printf("\n");
}

//加入进程队列 
void EnterQueue(programQueue* queue, program* pro)
{
	queue->LastProg->next = (program*)malloc(sizeof(program));
	queue->LastProg = queue->LastProg->next;
	queue->LastProg->enter_time = pro->enter_time;
	memcpy(queue->LastProg->name, pro->name, sizeof(pro->name));
	queue->LastProg->priority = pro->priority;
	queue->LastProg->running_time = pro->running_time;
	queue->LastProg->copyRunning_time = pro->copyRunning_time;
	queue->LastProg->start_time = pro->start_time;
	queue->size++;
}

//查询
program* poll(programQueue* queue)
{
	program* temp = queue->firstProg->next;
	if (temp == queue->LastProg)
	{
		queue->LastProg = queue->firstProg;
		queue->size--;
		return temp;
	}
	queue->firstProg->next = queue->firstProg->next->next;
	queue->size--;
	return temp;
}

//输入
void inputProgram(program pro[], int num)
{
	for (int i = 0; i < num; i++)
	{
		program prog;
		printf("请输入第%d个进程的名字,到达时间,服务时间,优先级\n", i + 1);
		scanf("%s", prog.name);
		scanf("%d", &prog.enter_time);
		scanf("%d", &prog.running_time);
		prog.copyRunning_time = prog.running_time;
		scanf("%d", &prog.priority);
		pro[i] = prog;
	}
}

//根据时间排序
void sortWithEnterTime(program pro[], int num)
{
	for (int i = 1; i < num; i++)
	{
		for (int j = 0; j < num - i; j++)
		{
			if (pro[j].enter_time > pro[j + 1].enter_time)
			{
				program temp = pro[j];
				pro[j] = pro[j + 1];
				pro[j + 1] = temp;
			}
		}
	}
}

//FCFS先来先服务算法
void FCFS(program pro[], int num)
{
	printf("进程 到达时间  服务时间 开始时间 完成时间 周转时间 带权周转时间\n");
	sortWithEnterTime(pro, num);    //按照进入顺序排序 
	programQueue* queue = (programQueue*)malloc(sizeof(programQueue));
	Queueinit(queue);
	EnterQueue(queue, &pro[0]);
	int time = pro[0].enter_time;
	int pronum = 1;    //记录当前的进程 
	float sum_T_time = 0, sum_QT_time = 0;
	while (queue->size > 0)
	{
		program* curpro = poll(queue);   //从进程队列中取出进程 
		if (time < curpro->enter_time)
			time = curpro->enter_time;
		int done_time = time + curpro->running_time;
		int T_time = done_time - curpro->enter_time;
		sum_T_time += T_time;
		float QT_time = T_time / (curpro->running_time + 0.0);
		sum_QT_time += QT_time;
		for (int tt = time; tt <= done_time && pronum < num; tt++)
		{
			//模拟进程的执行过程 
			if (tt >= pro[pronum].enter_time)
			{
				EnterQueue(queue, &pro[pronum]);
				pronum++;
			}
		}
		printf("%s\t%d\t%d\t%d\t%d\t%d\t%.2f\n", curpro->name, curpro->enter_time, curpro->running_time, time, done_time, T_time, QT_time);
		time += curpro->running_time;
		if (queue->size == 0 && pronum < num)
		{
			//防止出现前一个进程执行完到下一个进程到达之间无进程进入 
			EnterQueue(queue, &pro[pronum]);
			pronum++;
		}
	}
	printf("平均周转时间为%.2f\t平均带权周转时间为%.2f\n", sum_T_time / (num + 0.0), sum_QT_time / (num + 0.0));
}

//根据长度排序
void sortWithLongth(program pro[], int start, int end)
{
	int len = end - start;
	if (len == 1) return;
	for (int i = 1; i < len; i++) {
		for (int j = start; j < end - i; j++)
		{
			if (pro[j].running_time > pro[j + 1].running_time)
			{
				program temp = pro[j];
				pro[j] = pro[j + 1];
				pro[j + 1] = temp;
			}
		}
	}
}

//短作业优先算法
void SJF(program pro[], int num)
{
	printf("进程 到达时间  服务时间 开始时间 完成时间 周转时间 带权周转时间\n");
	sortWithEnterTime(pro, num);
	programQueue* queue = (programQueue*)malloc(sizeof(programQueue));
	Queueinit(queue);
	EnterQueue(queue, &pro[0]);
	int time = pro[0].enter_time;
	int pronum = 1;    //记录当前的进程 
	float sum_T_time = 0, sum_QT_time = 0;
	while (queue->size > 0)
	{
		program* curpro = poll(queue);   //从进程队列中取出进程 
		if (time < curpro->enter_time)
			time = curpro->enter_time;
		int done_time = time + curpro->running_time;
		int T_time = done_time - curpro->enter_time;
		float QT_time = T_time / (curpro->running_time + 0.0);
		sum_T_time += T_time;
		sum_QT_time += QT_time;
		int pre = pronum;
		for (int tt = time; tt <= done_time && pronum < num; tt++)
		{
			//模拟进程的执行过程 
			if (tt >= pro[pronum].enter_time)
			{
				// 统计从此任务开始到结束之间有几个进程到达 
				pronum++;
			}
		}
		sortWithLongth(pro, pre, pronum);//将到达的进程按照服务时间排序
		for (int i = pre; i < pronum; i++)
		{
			//将进程链入队列 
			EnterQueue(queue, &pro[i]);
		}
		pre = pronum;
		printf("%s\t%d\t%d\t%d\t%d\t%d\t%.2f\n", curpro->name, curpro->enter_time, curpro->running_time, time, done_time, T_time, QT_time);
		time += curpro->running_time;
		if (queue->size == 0 && pronum < num)
		{
			//防止出现前一个进程执行完到下一个进程到达之间无进程进入 
			EnterQueue(queue, &pro[pronum]);
			pronum++;
		}
	}
	printf("平均周转时间为%.2f\t平均带权周转时间为%.2f\n", sum_T_time / (num + 0.0), sum_QT_time / num);
}

//根据优先级排列
void sortWithPriority(program pro[], int start, int end)
{
	int len = end - start;
	if (len == 1) return;
	for (int i = 1; i < len; i++)
	{
		for (int j = start; j < end - i; j++)
		{
			if (pro[j].priority > pro[j + 1].priority)
			{
				program temp = pro[j];
				pro[j] = pro[j + 1];
				pro[j + 1] = temp;
			}
		}
	}
}


//优先权高者优先(HPF)
void HPF(program pro[], int num)
{
	printf("进程 到达时间  服务时间 开始时间 完成时间 周转时间 带权周转时间\n");
	sortWithEnterTime(pro, num);
	programQueue* queue = (programQueue*)malloc(sizeof(programQueue));
	Queueinit(queue);
	EnterQueue(queue, &pro[0]);
	int time = pro[0].enter_time;
	int pronum = 1;    //记录当前的进程 
	float sum_T_time = 0, sum_QT_time = 0;
	while (queue->size > 0)
	{
		program* curpro = poll(queue);   //从进程队列中取出进程 
		if (time < curpro->enter_time)
			time = curpro->enter_time;
		int done_time = time + curpro->running_time;
		int T_time = done_time - curpro->enter_time;
		float QT_time = T_time / (curpro->running_time + 0.0);
		sum_T_time += T_time;
		sum_QT_time += QT_time;
		int pre = pronum;
		for (int tt = time; tt <= done_time && pronum < num; tt++)
		{
			//模拟进程的执行过程 
			if (tt >= pro[pronum].enter_time)
			{
				// 统计从此任务开始到结束之间有几个进程到达 
				pronum++;
			}
		}
		sortWithPriority(pro, pre, pronum);//将到达的进程按照服务时间排序
		for (int i = pre; i < pronum; i++)
		{
			//将进程链入队列 
			EnterQueue(queue, &pro[i]);
		}
		pre = pronum;
		printf("%s\t%d\t%d\t%d\t%d\t%d\t%.2f\n", curpro->name, curpro->enter_time, curpro->running_time, time, done_time, T_time, QT_time);
		time += curpro->running_time;
		if (queue->size == 0 && pronum < num)
		{
			//防止出现前一个进程执行完到下一个进程到达之间无进程进入 
			EnterQueue(queue, &pro[pronum]);
			pronum++;
		}
	}
	printf("平均周转时间为%.2f\t平均带权周转时间为%.2f\n", sum_T_time / (num + 0.0), sum_QT_time / (num + 0.0));
}



//时间片轮转(RR)
void RR(program pro[], int num)
{
	printf("请输入时间片大小");
	int timeslice; scanf("%d", &timeslice);
	printf("进程 到达时间  服务时间 进入时间 完成时间 周转时间 带权周转时间\n");
	sortWithEnterTime(pro, num);
	programQueue* queue = (programQueue*)malloc(sizeof(programQueue));
	Queueinit(queue);
	pro[0].start_time = pro[0].enter_time;
	EnterQueue(queue, &pro[0]);
	int time = 0;
	int pronum = 1;
	float sum_T_time = 0, sum_QT_time = 0;
	while (queue->size > 0)
	{
		program* curpro = poll(queue);    // 从队列中取出头节点 
		if (time < curpro->enter_time)
			time = curpro->enter_time;
		if (timeslice >= curpro->running_time)
		{
			// 如果剩余时间小于时间片  则此任务完成
			for (int tt = time; tt <= time + curpro->running_time && pronum < num; tt++)
			{
				// 模拟进程的执行过程 
				if (tt >= pro[pronum].enter_time)
				{
					// 统计从此任务开始到结束之间有几个进程到达 
					pro[pronum].start_time = tt;
					EnterQueue(queue, &pro[pronum]);
					pronum++;
				}
			}
			time += curpro->running_time;
			curpro->running_time = 0;
			curpro->done_time = time;
			int T_time = curpro->done_time - curpro->start_time;
			float QT_time = T_time / (curpro->copyRunning_time + 0.0);
			sum_T_time += T_time;
			sum_QT_time += QT_time;
			printf("%s\t%d\t%d\t  %d\t   %d\t %d\t  %.2f\n", curpro->name, curpro->enter_time, curpro->copyRunning_time,
				curpro->start_time, curpro->done_time, T_time, QT_time);
			if (queue->size == 0 && pronum < num)
			{
				//防止出现前一个进程执行完到下一个进程到达之间无进程进入 
				pro[pronum].start_time = pro[pronum].enter_time;
				EnterQueue(queue, &pro[pronum]);
				pronum++;
			}
			continue;
		}
		for (int tt = time; tt <= time + timeslice && pronum < num; tt++)
		{
			//模拟进程的执行过程 
			if (tt >= pro[pronum].enter_time)
			{
				// 统计从此任务开始到结束之间有几个进程到达 
				pro[pronum].start_time = tt;
				EnterQueue(queue, &pro[pronum]);
				pronum++;
			}
		}
		time += timeslice;
		curpro->running_time -= timeslice;
		EnterQueue(queue, curpro);    //当前程序未完成  继续添加到队列中 
		if (queue->size == 0 && pronum < num)
		{
			//防止出现前一个进程执行完到下一个进程到达之间无进程进入 
			pro[pronum].start_time = pro[pronum].enter_time;
			EnterQueue(queue, &pro[pronum]);
			pronum++;
		}
	}
	printf("平均周转时间为%.2f\t平均带权周转时间为%.2f\n\n", sum_T_time / (num + 0.0), sum_QT_time / (num + 0.0));
}

//选择菜单
void choiceMenu()
{
	printf("请选择进程调度算法:\n");
	printf("1.先来先服务算法\n");
	printf("2.短进程优先算法\n");
	printf("3.高优先级优先\n");
	printf("4.时间片轮转算法\n");
}

test.cpp: 

#define _CRT_SECURE_NO_WARNINGS 1
#include"course.h"

int main()
{
	int proNum = 5;		//5个进程
	program pro[5];
	inputProgram(pro, proNum);
	choiceMenu();
	int choice;
	do
	{
		scanf("%d", &choice);
		switch (choice)
		{
		case 1:
			system("cls");
			FCFS(pro, proNum);
			choiceMenu();
			break;
		case 2:
			system("cls");
			SJF(pro, proNum);
			choiceMenu();
			break;
		case 3:
			system("cls");
			HPF(pro, proNum);
			choiceMenu();
			break;
		case 4:
			system("cls");
			RR(pro, proNum);
			choiceMenu();
			break;
		default:
			printf("输入错误,请重新尝试\n");
			break;
		}
	} while (choice);

	return 0;
}



本次的分享就到此为止了,感谢您的支持,如果您有不同意见,欢迎评论区积极交流

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/m0_69519887/article/details/134053438

智能推荐

稀疏编码的数学基础与理论分析-程序员宅基地

文章浏览阅读290次,点赞8次,收藏10次。1.背景介绍稀疏编码是一种用于处理稀疏数据的编码技术,其主要应用于信息传输、存储和处理等领域。稀疏数据是指数据中大部分元素为零或近似于零的数据,例如文本、图像、音频、视频等。稀疏编码的核心思想是将稀疏数据表示为非零元素和它们对应的位置信息,从而减少存储空间和计算复杂度。稀疏编码的研究起源于1990年代,随着大数据时代的到来,稀疏编码技术的应用范围和影响力不断扩大。目前,稀疏编码已经成为计算...

EasyGBS国标流媒体服务器GB28181国标方案安装使用文档-程序员宅基地

文章浏览阅读217次。EasyGBS - GB28181 国标方案安装使用文档下载安装包下载,正式使用需商业授权, 功能一致在线演示在线API架构图EasySIPCMSSIP 中心信令服务, 单节点, 自带一个 Redis Server, 随 EasySIPCMS 自启动, 不需要手动运行EasySIPSMSSIP 流媒体服务, 根..._easygbs-windows-2.6.0-23042316使用文档

【Web】记录巅峰极客2023 BabyURL题目复现——Jackson原生链_原生jackson 反序列化链子-程序员宅基地

文章浏览阅读1.2k次,点赞27次,收藏7次。2023巅峰极客 BabyURL之前AliyunCTF Bypassit I这题考查了这样一条链子:其实就是Jackson的原生反序列化利用今天复现的这题也是大同小异,一起来整一下。_原生jackson 反序列化链子

一文搞懂SpringCloud,详解干货,做好笔记_spring cloud-程序员宅基地

文章浏览阅读734次,点赞9次,收藏7次。微服务架构简单的说就是将单体应用进一步拆分,拆分成更小的服务,每个服务都是一个可以独立运行的项目。这么多小服务,如何管理他们?(服务治理 注册中心[服务注册 发现 剔除])这么多小服务,他们之间如何通讯?这么多小服务,客户端怎么访问他们?(网关)这么多小服务,一旦出现问题了,应该如何自处理?(容错)这么多小服务,一旦出现问题了,应该如何排错?(链路追踪)对于上面的问题,是任何一个微服务设计者都不能绕过去的,因此大部分的微服务产品都针对每一个问题提供了相应的组件来解决它们。_spring cloud

Js实现图片点击切换与轮播-程序员宅基地

文章浏览阅读5.9k次,点赞6次,收藏20次。Js实现图片点击切换与轮播图片点击切换<!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title></title> <script type="text/ja..._点击图片进行轮播图切换

tensorflow-gpu版本安装教程(过程详细)_tensorflow gpu版本安装-程序员宅基地

文章浏览阅读10w+次,点赞245次,收藏1.5k次。在开始安装前,如果你的电脑装过tensorflow,请先把他们卸载干净,包括依赖的包(tensorflow-estimator、tensorboard、tensorflow、keras-applications、keras-preprocessing),不然后续安装了tensorflow-gpu可能会出现找不到cuda的问题。cuda、cudnn。..._tensorflow gpu版本安装

随便推点

物联网时代 权限滥用漏洞的攻击及防御-程序员宅基地

文章浏览阅读243次。0x00 简介权限滥用漏洞一般归类于逻辑问题,是指服务端功能开放过多或权限限制不严格,导致攻击者可以通过直接或间接调用的方式达到攻击效果。随着物联网时代的到来,这种漏洞已经屡见不鲜,各种漏洞组合利用也是千奇百怪、五花八门,这里总结漏洞是为了更好地应对和预防,如有不妥之处还请业内人士多多指教。0x01 背景2014年4月,在比特币飞涨的时代某网站曾经..._使用物联网漏洞的使用者

Visual Odometry and Depth Calculation--Epipolar Geometry--Direct Method--PnP_normalized plane coordinates-程序员宅基地

文章浏览阅读786次。A. Epipolar geometry and triangulationThe epipolar geometry mainly adopts the feature point method, such as SIFT, SURF and ORB, etc. to obtain the feature points corresponding to two frames of images. As shown in Figure 1, let the first image be ​ and th_normalized plane coordinates

开放信息抽取(OIE)系统(三)-- 第二代开放信息抽取系统(人工规则, rule-based, 先抽取关系)_语义角色增强的关系抽取-程序员宅基地

文章浏览阅读708次,点赞2次,收藏3次。开放信息抽取(OIE)系统(三)-- 第二代开放信息抽取系统(人工规则, rule-based, 先关系再实体)一.第二代开放信息抽取系统背景​ 第一代开放信息抽取系统(Open Information Extraction, OIE, learning-based, 自学习, 先抽取实体)通常抽取大量冗余信息,为了消除这些冗余信息,诞生了第二代开放信息抽取系统。二.第二代开放信息抽取系统历史第二代开放信息抽取系统着眼于解决第一代系统的三大问题: 大量非信息性提取(即省略关键信息的提取)、_语义角色增强的关系抽取

10个顶尖响应式HTML5网页_html欢迎页面-程序员宅基地

文章浏览阅读1.1w次,点赞6次,收藏51次。快速完成网页设计,10个顶尖响应式HTML5网页模板助你一臂之力为了寻找一个优质的网页模板,网页设计师和开发者往往可能会花上大半天的时间。不过幸运的是,现在的网页设计师和开发人员已经开始共享HTML5,Bootstrap和CSS3中的免费网页模板资源。鉴于网站模板的灵活性和强大的功能,现在广大设计师和开发者对html5网站的实际需求日益增长。为了造福大众,Mockplus的小伙伴整理了2018年最..._html欢迎页面

计算机二级 考试科目,2018全国计算机等级考试调整,一、二级都增加了考试科目...-程序员宅基地

文章浏览阅读282次。原标题:2018全国计算机等级考试调整,一、二级都增加了考试科目全国计算机等级考试将于9月15-17日举行。在备考的最后冲刺阶段,小编为大家整理了今年新公布的全国计算机等级考试调整方案,希望对备考的小伙伴有所帮助,快随小编往下看吧!从2018年3月开始,全国计算机等级考试实施2018版考试大纲,并按新体系开考各个考试级别。具体调整内容如下:一、考试级别及科目1.一级新增“网络安全素质教育”科目(代..._计算机二级增报科目什么意思

conan简单使用_apt install conan-程序员宅基地

文章浏览阅读240次。conan简单使用。_apt install conan