RPI.GPIO使用手册_rpi.gpio用法-程序员宅基地

技术标签: 树莓派  Python  

目录(?)[+]

1.RPi.GPIO模块基本使用

导入模块

导入 RPi.GPIO 模块:

import RPi.GPIO as GPIO

通过下面的代码可以检测导入是否成功

try:
    import RPi.GPIO as GPIO
except RuntimeError:
    print("Error importing RPi.GPIO!  This is probably because you need superuser privileges.  You can achieve this by using 'sudo' to run your script")

引脚编号方式

RPi.GPIO中有两种引脚的编号方式。第一个是使用电路板编号系统。这指的是在树莓派电路板上P1开头的。使用这个编号系统的优势是,您的硬件将总是工作,不管电路板是哪个版本的。你不需要重新修改代码。
第二个编号系统是BCM数字。这是一个低水平的工作方式,它指的是电路板引脚的位置号。电路板版本变化时脚本程序需要对应修改。
必须指定使用哪种:

GPIO.setmode(GPIO.BOARD)
  # or
GPIO.setmode(GPIO.BCM)

可以查询使用的哪种编号方法

mode = GPIO.getmode()
#输出: GPIO.BOARD, GPIO.BCM or None

设置一个通道

作为输入

GPIO.setup(channel, GPIO.IN)
#chanel与使用的编号方式对应

作为输出:

GPIO.setup(channel, GPIO.OUT)
GPIO.setup(channel, GPIO.OUT, initial=GPIO.HIGH)

设置多个通道

chan_list = [11,12]    # add as many channels as you want!
GPIO.setup(chan_list, GPIO.OUT)

输入

读取一个GPIO口的值

GPIO.input(channel)
#返回:0 / GPIO.LOW / False or 1 / GPIO.HIGH / True.

输出

设置一个GPIO口的输出值

GPIO.output(channel, state)
#State 可以是 0 / GPIO.LOW / False or 1 / GPIO.HIGH / True.

设置多个通道的输出

chan_list = [11,12]           # also works with tuples
GPIO.output(chan_list, GPIO.LOW)   # sets all to GPIO.LOW
GPIO.output(chan_list, (GPIO.HIGH, GPIO.LOW))
# sets first HIGH and second LOW

清空

在程序的末尾可以加上

GPIO.cleanup()

如果想清理特定的通道

GPIO.cleanup(channel)
GPIO.cleanup( (channel1, channel2) )
GPIO.cleanup( [channel1, channel2] )

2.GPIO 输入

要得到GPIO输入到你的程序的几种方法。第一个和最简单的方法是在时间点上检查输入值。这被称为“轮询”,如果你的程序在错误的时间读取值,可能会错过一个输入。轮询是在循环中进行的。另外一种方法来响应一个GPIO输入是使用“中断”(边沿检测)。边沿是由高到低(下降沿)或低到高(上升沿)的过渡的名称。

上拉或者下拉电阻

如果您没有连接到任何硬件的输入引脚,它将’浮动’。换句话说,读取的值是未定义的,因为它没有连接到任何事情,直到你按一个按钮或开关。由于受电干扰,它的值可能会改变。
为了实现这一点,我们使用了上拉或下拉电阻。以这种方式,可以设置输入的默认值。在硬件和软件上有上拉/下拉电阻是可能的。在硬件上,在输入通道和3.3V(上拉)之间的或0V(下拉)使用10K电阻是常用的。通过rpi.gpio模块配置GPIO口可以实现同样的功能

GPIO.setup(channel, GPIO.IN, pull_up_down=GPIO.PUD_UP)
  # or
GPIO.setup(channel, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

测试输入(轮询)

可以在一个时间点查看输入

if GPIO.input(channel):
    print('Input was HIGH')
else:
    print('Input was LOW')

在循环中使用轮询来检测按钮是否按下

while GPIO.input(channel) == GPIO.LOW:
    time.sleep(0.01)  # wait 10 ms to give CPU chance to do other things

中断与边沿检测

边沿是电信号从低到高(上升沿)或从高到低(下降沿)的改变。这种改是一种事件,为了使程序在运行的过程中检测到按钮按下这样的事件:
• wait_for_edge()
• event_detected()
• 另外一个线程的回调方法
wait_for_edge()方法不会执行,只到检测到边沿,检测按钮按下也可以写成:

GPIO.wait_for_edge(channel, GPIO.RISING)

这种检测边沿( GPIO.RISING, GPIO.FALLING or GPIO.BOTH)的优势是使用CPU的资源很少
可以加一个timeout参数

#wait for up to 5 seconds for a rising edge (timeout is in milliseconds)
channel = GPIO.wait_for_edge(channel, GPIO_RISING, timeout=5000)
if channel is None:
    print('Timeout occurred')
else:
    print('Edge detected on channel', channel)

event_detected()方法是用在循环事件中,在Pygame或PyQt这种存在一个主循环监听GUI时非常有用.

GPIO.add_event_detect(channel, GPIO.RISING)  # add rising edge detection on a channel
do_something()
if GPIO.event_detected(channel):
    print('Button pressed')

线程回调

RPi.GPIO运行第二个线程来处理回调函数:

def my_callback(channel):
    print('This is a edge event callback function!')
    print('Edge detected on channel %s'%channel)
    print('This is run in a different thread to your main program')

GPIO.add_event_detect(channel, GPIO.RISING, callback=my_callback)  # add rising edge detection on a channel
...the rest of your program...

多个回调函数:

def my_callback_one(channel):
    print('Callback one')

def my_callback_two(channel):
    print('Callback two')

GPIO.add_event_detect(channel, GPIO.RISING)
GPIO.add_event_callback(channel, my_callback_one)
GPIO.add_event_callback(channel, my_callback_two)

这里的回调函数是按顺序运行的,不是同时运行的,因为只有一个进程(process)在运行

开关去抖

开关在按下的过程中回调函数会执行多次,这是因为开关按下的过程中由于抖动产生多个边沿的原因,下面的方法可以解决这个问题:
• 增加一个0.1uF的电容与开关串接
• 软件去抖
• 结合上述两种方法
在程序中增加一个bouncetime参数可以现实去抖:

# add rising edge detection on a channel, ignoring further edges for 200ms for switch bounce handling
GPIO.add_event_detect(channel, GPIO.RISING, callback=my_callback, bouncetime=200)
or
GPIO.add_event_callback(channel, my_callback, bouncetime=200)

移除事件监听

GPIO.remove_event_detect(channel)

3.GPIO 输出

设置RPi.GPIO

import RPi.GPIO as GPIO
GPIO.setmode(GPIO.BOARD)
GPIO.setup(12, GPIO.OUT)
  
  
   
  • 设置为高电平输出:
GPIO.output(12, GPIO.HIGH)
 # or
GPIO.output(12, 1)
 # or
GPIO.output(12, True)

设置低电平输出

GPIO.output(12, GPIO.LOW)
 # or
GPIO.output(12, 0)
 # or
GPIO.output(12, False)

同时设置多个通道的输出

chan_list = (11,12)
GPIO.output(chan_list, GPIO.LOW) # all LOW
GPIO.output(chan_list, (GPIO.HIGH,GPIO.LOW))  # first LOW, second HIGH

清空

GPIO.cleanup()
input()方法可以读取目前通道的输出:
GPIO.output(12, not GPIO.input(12))

4.PWM(脉冲宽度调制)

创建PWM 实例

p = GPIO.PWM(channel, frequency)

启动PWM

p.start(dc)   # where dc is the duty cycle (0.0 <= dc <= 100.0)

改变频率

p.ChangeFrequency(freq)   # where freq is the new frequency in Hz

改变占空比

p.ChangeDutyCycle(dc)  # where 0.0 <= dc <= 100.0

停止PWM

p.stop()

变量P超出范围时PWM也会停止.

LED每两秒闪烁一次:

import RPi.GPIO as GPIO
GPIO.setmode(GPIO.BOARD)
GPIO.setup(12, GPIO.OUT)

p = GPIO.PWM(12, 0.5)
p.start(1)
input('Press return to stop:')   # use raw_input for Python 2
p.stop()
GPIO.cleanup()
An example to brighten/dim an LED:
import time
import RPi.GPIO as GPIO
GPIO.setmode(GPIO.BOARD)
GPIO.setup(12, GPIO.OUT)

p = GPIO.PWM(12, 50)  # channel=12 frequency=50Hz
p.start(0)
try:
    while 1:
        for dc in range(0, 101, 5):
            p.ChangeDutyCycle(dc)
            time.sleep(0.1)
        for dc in range(100, -1, -5):
            p.ChangeDutyCycle(dc)
            time.sleep(0.1)
except KeyboardInterrupt:
    pass
p.stop()
GPIO.cleanup()

gpio_function(channel)
显示一个GPIO口的功能:

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BOARD)
func = GPIO.gpio_function(pin)
#返回值:GPIO.IN, GPIO.OUT, GPIO.SPI, GPIO.I2C, GPIO.HARD_PWM, GPIO.SERIAL, GPIO.UNKNOWN

参考https://sourceforge.net/p/raspberry-gpio-python/wiki/Home/

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_35893742/article/details/53428679

智能推荐

稀疏编码的数学基础与理论分析-程序员宅基地

文章浏览阅读290次,点赞8次,收藏10次。1.背景介绍稀疏编码是一种用于处理稀疏数据的编码技术,其主要应用于信息传输、存储和处理等领域。稀疏数据是指数据中大部分元素为零或近似于零的数据,例如文本、图像、音频、视频等。稀疏编码的核心思想是将稀疏数据表示为非零元素和它们对应的位置信息,从而减少存储空间和计算复杂度。稀疏编码的研究起源于1990年代,随着大数据时代的到来,稀疏编码技术的应用范围和影响力不断扩大。目前,稀疏编码已经成为计算...

EasyGBS国标流媒体服务器GB28181国标方案安装使用文档-程序员宅基地

文章浏览阅读217次。EasyGBS - GB28181 国标方案安装使用文档下载安装包下载,正式使用需商业授权, 功能一致在线演示在线API架构图EasySIPCMSSIP 中心信令服务, 单节点, 自带一个 Redis Server, 随 EasySIPCMS 自启动, 不需要手动运行EasySIPSMSSIP 流媒体服务, 根..._easygbs-windows-2.6.0-23042316使用文档

【Web】记录巅峰极客2023 BabyURL题目复现——Jackson原生链_原生jackson 反序列化链子-程序员宅基地

文章浏览阅读1.2k次,点赞27次,收藏7次。2023巅峰极客 BabyURL之前AliyunCTF Bypassit I这题考查了这样一条链子:其实就是Jackson的原生反序列化利用今天复现的这题也是大同小异,一起来整一下。_原生jackson 反序列化链子

一文搞懂SpringCloud,详解干货,做好笔记_spring cloud-程序员宅基地

文章浏览阅读734次,点赞9次,收藏7次。微服务架构简单的说就是将单体应用进一步拆分,拆分成更小的服务,每个服务都是一个可以独立运行的项目。这么多小服务,如何管理他们?(服务治理 注册中心[服务注册 发现 剔除])这么多小服务,他们之间如何通讯?这么多小服务,客户端怎么访问他们?(网关)这么多小服务,一旦出现问题了,应该如何自处理?(容错)这么多小服务,一旦出现问题了,应该如何排错?(链路追踪)对于上面的问题,是任何一个微服务设计者都不能绕过去的,因此大部分的微服务产品都针对每一个问题提供了相应的组件来解决它们。_spring cloud

Js实现图片点击切换与轮播-程序员宅基地

文章浏览阅读5.9k次,点赞6次,收藏20次。Js实现图片点击切换与轮播图片点击切换<!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title></title> <script type="text/ja..._点击图片进行轮播图切换

tensorflow-gpu版本安装教程(过程详细)_tensorflow gpu版本安装-程序员宅基地

文章浏览阅读10w+次,点赞245次,收藏1.5k次。在开始安装前,如果你的电脑装过tensorflow,请先把他们卸载干净,包括依赖的包(tensorflow-estimator、tensorboard、tensorflow、keras-applications、keras-preprocessing),不然后续安装了tensorflow-gpu可能会出现找不到cuda的问题。cuda、cudnn。..._tensorflow gpu版本安装

随便推点

物联网时代 权限滥用漏洞的攻击及防御-程序员宅基地

文章浏览阅读243次。0x00 简介权限滥用漏洞一般归类于逻辑问题,是指服务端功能开放过多或权限限制不严格,导致攻击者可以通过直接或间接调用的方式达到攻击效果。随着物联网时代的到来,这种漏洞已经屡见不鲜,各种漏洞组合利用也是千奇百怪、五花八门,这里总结漏洞是为了更好地应对和预防,如有不妥之处还请业内人士多多指教。0x01 背景2014年4月,在比特币飞涨的时代某网站曾经..._使用物联网漏洞的使用者

Visual Odometry and Depth Calculation--Epipolar Geometry--Direct Method--PnP_normalized plane coordinates-程序员宅基地

文章浏览阅读786次。A. Epipolar geometry and triangulationThe epipolar geometry mainly adopts the feature point method, such as SIFT, SURF and ORB, etc. to obtain the feature points corresponding to two frames of images. As shown in Figure 1, let the first image be ​ and th_normalized plane coordinates

开放信息抽取(OIE)系统(三)-- 第二代开放信息抽取系统(人工规则, rule-based, 先抽取关系)_语义角色增强的关系抽取-程序员宅基地

文章浏览阅读708次,点赞2次,收藏3次。开放信息抽取(OIE)系统(三)-- 第二代开放信息抽取系统(人工规则, rule-based, 先关系再实体)一.第二代开放信息抽取系统背景​ 第一代开放信息抽取系统(Open Information Extraction, OIE, learning-based, 自学习, 先抽取实体)通常抽取大量冗余信息,为了消除这些冗余信息,诞生了第二代开放信息抽取系统。二.第二代开放信息抽取系统历史第二代开放信息抽取系统着眼于解决第一代系统的三大问题: 大量非信息性提取(即省略关键信息的提取)、_语义角色增强的关系抽取

10个顶尖响应式HTML5网页_html欢迎页面-程序员宅基地

文章浏览阅读1.1w次,点赞6次,收藏51次。快速完成网页设计,10个顶尖响应式HTML5网页模板助你一臂之力为了寻找一个优质的网页模板,网页设计师和开发者往往可能会花上大半天的时间。不过幸运的是,现在的网页设计师和开发人员已经开始共享HTML5,Bootstrap和CSS3中的免费网页模板资源。鉴于网站模板的灵活性和强大的功能,现在广大设计师和开发者对html5网站的实际需求日益增长。为了造福大众,Mockplus的小伙伴整理了2018年最..._html欢迎页面

计算机二级 考试科目,2018全国计算机等级考试调整,一、二级都增加了考试科目...-程序员宅基地

文章浏览阅读282次。原标题:2018全国计算机等级考试调整,一、二级都增加了考试科目全国计算机等级考试将于9月15-17日举行。在备考的最后冲刺阶段,小编为大家整理了今年新公布的全国计算机等级考试调整方案,希望对备考的小伙伴有所帮助,快随小编往下看吧!从2018年3月开始,全国计算机等级考试实施2018版考试大纲,并按新体系开考各个考试级别。具体调整内容如下:一、考试级别及科目1.一级新增“网络安全素质教育”科目(代..._计算机二级增报科目什么意思

conan简单使用_apt install conan-程序员宅基地

文章浏览阅读240次。conan简单使用。_apt install conan