《ARPG游戏深度强化学习 》序贯决策问题、完成ARPG世界里的游戏代码实践_游戏决策深度学习代码-程序员宅基地

技术标签: tensorflow  机器学习  ARPG游戏深度强化学习  深度学习  

序贯决策问题

图示:
在这里插入图片描述

马尔科夫决策过程

序贯决策,主要的方法是:马尔科夫决策过程。

一个马尔可夫过程叫:MDP。
一个MDP由一个五元组构成:S A P R r

  • S 是所有状态的集合
    在这里插入图片描述

  • A 是所有动作的集合
    在这里插入图片描述

  • P 是某状态S’在某A‘动作下的转移概率
    在这里插入图片描述
    策略P就是在状态S下做A的概率多大。

  • R 是奖励
    在这里插入图片描述

  • r 是回报有时候也用G标示(gain)
    在这里插入图片描述

当前状态,当前要做的动作,以及下一个状态,三者共同决定环境反馈给智能体,什么样的R(奖励),通常R是标量函数,返回一个标量,标量对应的向量,向量自带方向标量是一个值。

例如:
王者荣耀:R(还有200点血,施展加血魔法magic1,有400点血)=5
当前要做的动作是:施展加血魔法magic1,就是加血,下一个状态,加血.
这个5是自己认为可以设计的。

回报的概念就是:每个动作执行后,所有的R累加。回报是评估当前MDP的一个得分。

model-free和model-based(有模型的方法和无模型的方法)

什么叫有模型的方法呢?

比如百度地图 能够瞬间给出A到B地点的 最短路径 ,是站在上帝视角上 得到了全局的城市交通数据 然后 直接最短路径求解 。

**无模型的方法,往往是用于不可能站在上帝视角,信息不够全的各种即时策略方法 **

蒙特卡罗法(Monte Carlo)

Monte Carlo 方法 适用于工程学 和各个行业领域 以及数学问题 。

用MC去解决问题 主要有经典的三个步骤:

  • 构造概率过程
  • 实现从已知概率分布中进行抽样
  • 建立各种估计量

例如:

算一个不规则的 2D 面积 。

微积分:
在这里插入图片描述
用多个长方形切割开 这个不规则凹封闭曲线在这里插入图片描述
只要长方形的宽足够的短,把各个长方形的面积累加 ,就非常接近这个不规则封闭曲线内部的面积 。

用Monte Carlo

直接拿200粒米 ,随机均匀的撒在方块内(撒出方块的不统计),最后 只要分别统计 在封闭曲线内的米的数量 A 和 在方块内 但是不在曲线内的米B , 这样 A/ (A+B) = 曲线内面积/方块面积,方块面积* A/ (A+B) = 曲线内面积。

我们以上的方法 用了同样的三个步骤:

  • 构造概率过程:已知这样的曲线;
  • 从已知概率分布抽样:均匀撒米,统计米的多少;
  • 建立估计量:用估计量测算目标面积。

AlphaGo 也用到了MC方法:

先是随机走(均匀撒米)
建立概率分布抽样(匹配棋盘结果,生成蒙特卡罗搜+
建立估计量:得到比较好的决策依据

MC方法特别适合 没有明显规律 或者规律很复杂 没有解析解的问题

on-policy off-policy

区分的方式就是:

on-policy :agent(智能体)从环境学习的策略和它与环境交互的策略,一样。

off-policy:agent(智能体)从环境学习的策略和它与环境交互的策略,不一样。

on-policy例子:

如果每次了解到周围最好的动作值,就直接走过去。并且学习策略也一样(告诉自己的大脑,自己以后也要这样更新自己的价值表)

这种 和环境的交互策略 和 自己学习更新自己的行动决策依据的表 的 方案是一样的 就是on-policy。

off-policy 例子:
眼前有一块红烧肉,我脑中模拟自己吃了一口,模拟吃的时候很好吃,然后更新了一下策略表,告诉自己,吃这块红烧肉会得到奖励。关键是 : 我只是脑袋里模拟的吃了一口。这不代表和环境交互 ,真正的环境交互是:我实际怎么做了?

如果脑袋里模拟吃了一口后,更新策略表,告诉自己,吃红烧肉可以得到奖励。(这叫【学习】)如果是on-policy,那就会直接和环境交互的过程中,也会实际吃一口红烧肉这个动作。但是如果是off-policy,则可能采取和【学习】的时候模拟的做法不一样,就是说,学习的策略并不用于直接决策用于执行如何和环境交互。这个时候 ,off-policy的做法是,虽然吃红烧肉比当前状态s下做别的动作回报多。但是我不一定选它这叫off-policy ,我保留了 一定的概率 我会随机选 或者其他方法 。

这种方法的robust(鲁棒性)非常强。
大家知道,我们吃红烧肉,立马获得了当前状态下能够获得的最好R(回报),但是不代表吃红烧肉在未来若干个时间内是最好的选择。(比如带来了增肥,脂肪肝,三高)。如果按on-policy ,当前学习的策略可能并不代表未来 。但是智能体如果用on-policy,就会过于相信自己学到的眼前的东西。off-policy的智能体,则会说:虽然吃红烧肉我感觉是当前状态的最佳回报选择,但是我还是保留不吃的可能性,避免后面碰到更多的红烧肉,把我引入了某种深渊(三高和肥胖、亚健康和脂肪肝、肝癌、死亡)。这样 ,就不会一直吃红烧肉,偶尔还会不吃,去做别的事。这样才会有更多的机会学到新的可能性和探索新的优化。

几乎现在所有的深度强化学习应用,都用到了Q-Learning这一类的,off-policy的算法

Q-Learning

Q-Learning 就是一个数学公式 比较简洁。
在这里插入图片描述

  • S代表当前状态
  • a代表了当前状态所采取的行动
  • S’代表S在a行动后跳转到的下一个状态
  • Q(S,A)代表 Q估值
  • γ 决定未来奖励的重要性的程度

由公式看出:

s,a 对应的 Q 值等于 即时奖励 结合 未来奖励的 折扣discount

具体落地到怎么执行 可以用 bellman 公式:
在这里插入图片描述

  • r是智能体在s状态上采取a行动的奖励
  • γ 是 discount度

举例:

第一步:
Q(饿了,吃红烧肉)= Reward(饿了,吃红烧肉) + Discount*max(Q(不饿了,吃红烧肉))
我们定义了如下的 MDP

S={饿了,不饿,很饱,超级胖,三高}
A={吃红烧肉,运动,吃素,看书}
choose_action(饿了,吃红烧肉)=不饿
R(饿了,吃红烧肉)=10
choose_action(不饿,吃红烧肉)=很饱
R(不饿,吃红烧肉)=0
choose_action(很饱,吃红烧肉)=超级胖
R(很饱,吃红烧肉)=-5
choose_action(超级胖,吃红烧肉)=三高
R(超级胖,吃红烧肉)=-20

第二步:
Q(饿了,吃红烧肉)= R(饿了,吃红烧肉) + Discountmax( R(不饿了,吃红烧肉) + Discountmax(Q(很饱,吃红烧肉)) )

再继续展开 就是更进一步 把 Q(很饱,吃红烧肉) 展开,其中 Discount 如果=1 ,那么 未来的所有步骤获得回报值 都会不打折扣的累加到当前的Q。如果Discount =0.6 ,就是说 每往后一步 回报值对当前Q估计决策 的 累加 逐步影响递减。

如何更新Q-Table
Q-Table就是S(s,a)

  1. 首先随机初始化S(s,a)表为一些比较小的随机数
  2. repeat:(起点)
  3. 基于s状态选择一个行动
  4. 接受奖励r以及跳转到新的状态s’
  5. Q(s,a) <- 老Q(s,a) 值+ alpha*( y- 老Q(s,a)值 )
  6. 直到 学习结束

其中y= R + discount*max Q(S’,a)
Q是一张表,所以用Q-table 表示 ,老Q(s,a)值 的意思是 表还没更新的时候 对应的 Q(s,a)值 ,等同于python的 =。

Q-Table的更新 就是agent学习的过程,而agent每一次决策,则是 选取 argmax Q(s, )。
argmax 的意思是 比如 :集合A={2,5,1,3,6} max (A) = 6。argmax(A) = 4 。因为从0数起 , 6在序号4 。index=4 。argmax(A)的意思是 A里的最大值对应的 index

完成南理ARPG世界里的游戏


import numpy as np
import pandas as pd
import time 



np.random.seed(2) #reproducible


class QLearning():
    T=10  #target
    W=-2  #wall
    F=1 #flower
    M=0# Moving road
    

    MAP=[[W,W,W,W,W,W,W,W],
         [W,0,0,0,0,0,F,W],
         [W,0,0,0,0,0,F,W],
         [W,0,W,W,W,0,W,W],
         [W,0,W,T,0,0,F,W],
         [W,0,W,W
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/sjjsaaaa/article/details/106377886

智能推荐

攻防世界_难度8_happy_puzzle_攻防世界困难模式攻略图文-程序员宅基地

文章浏览阅读645次。这个肯定是末尾的IDAT了,因为IDAT必须要满了才会开始一下个IDAT,这个明显就是末尾的IDAT了。,对应下面的create_head()代码。,对应下面的create_tail()代码。不要考虑爆破,我已经试了一下,太多情况了。题目来源:UNCTF。_攻防世界困难模式攻略图文

达梦数据库的导出(备份)、导入_达梦数据库导入导出-程序员宅基地

文章浏览阅读2.9k次,点赞3次,收藏10次。偶尔会用到,记录、分享。1. 数据库导出1.1 切换到dmdba用户su - dmdba1.2 进入达梦数据库安装路径的bin目录,执行导库操作  导出语句:./dexp cwy_init/[email protected]:5236 file=cwy_init.dmp log=cwy_init_exp.log 注释:   cwy_init/init_123..._达梦数据库导入导出

js引入kindeditor富文本编辑器的使用_kindeditor.js-程序员宅基地

文章浏览阅读1.9k次。1. 在官网上下载KindEditor文件,可以删掉不需要要到的jsp,asp,asp.net和php文件夹。接着把文件夹放到项目文件目录下。2. 修改html文件,在页面引入js文件:<script type="text/javascript" src="./kindeditor/kindeditor-all.js"></script><script type="text/javascript" src="./kindeditor/lang/zh-CN.js"_kindeditor.js

STM32学习过程记录11——基于STM32G431CBU6硬件SPI+DMA的高效WS2812B控制方法-程序员宅基地

文章浏览阅读2.3k次,点赞6次,收藏14次。SPI的详情简介不必赘述。假设我们通过SPI发送0xAA,我们的数据线就会变为10101010,通过修改不同的内容,即可修改SPI中0和1的持续时间。比如0xF0即为前半周期为高电平,后半周期为低电平的状态。在SPI的通信模式中,CPHA配置会影响该实验,下图展示了不同采样位置的SPI时序图[1]。CPOL = 0,CPHA = 1:CLK空闲状态 = 低电平,数据在下降沿采样,并在上升沿移出CPOL = 0,CPHA = 0:CLK空闲状态 = 低电平,数据在上升沿采样,并在下降沿移出。_stm32g431cbu6

计算机网络-数据链路层_接收方收到链路层数据后,使用crc检验后,余数为0,说明链路层的传输时可靠传输-程序员宅基地

文章浏览阅读1.2k次,点赞2次,收藏8次。数据链路层习题自测问题1.数据链路(即逻辑链路)与链路(即物理链路)有何区别?“电路接通了”与”数据链路接通了”的区别何在?2.数据链路层中的链路控制包括哪些功能?试讨论数据链路层做成可靠的链路层有哪些优点和缺点。3.网络适配器的作用是什么?网络适配器工作在哪一层?4.数据链路层的三个基本问题(帧定界、透明传输和差错检测)为什么都必须加以解决?5.如果在数据链路层不进行帧定界,会发生什么问题?6.PPP协议的主要特点是什么?为什么PPP不使用帧的编号?PPP适用于什么情况?为什么PPP协议不_接收方收到链路层数据后,使用crc检验后,余数为0,说明链路层的传输时可靠传输

软件测试工程师移民加拿大_无证移民,未受过软件工程师的教育(第1部分)-程序员宅基地

文章浏览阅读587次。软件测试工程师移民加拿大 无证移民,未受过软件工程师的教育(第1部分) (Undocumented Immigrant With No Education to Software Engineer(Part 1))Before I start, I want you to please bear with me on the way I write, I have very little gen...

随便推点

Thinkpad X250 secure boot failed 启动失败问题解决_安装完系统提示secureboot failure-程序员宅基地

文章浏览阅读304次。Thinkpad X250笔记本电脑,装的是FreeBSD,进入BIOS修改虚拟化配置(其后可能是误设置了安全开机),保存退出后系统无法启动,显示:secure boot failed ,把自己惊出一身冷汗,因为这台笔记本刚好还没开始做备份.....根据错误提示,到bios里面去找相关配置,在Security里面找到了Secure Boot选项,发现果然被设置为Enabled,将其修改为Disabled ,再开机,终于正常启动了。_安装完系统提示secureboot failure

C++如何做字符串分割(5种方法)_c++ 字符串分割-程序员宅基地

文章浏览阅读10w+次,点赞93次,收藏352次。1、用strtok函数进行字符串分割原型: char *strtok(char *str, const char *delim);功能:分解字符串为一组字符串。参数说明:str为要分解的字符串,delim为分隔符字符串。返回值:从str开头开始的一个个被分割的串。当没有被分割的串时则返回NULL。其它:strtok函数线程不安全,可以使用strtok_r替代。示例://借助strtok实现split#include <string.h>#include <stdio.h&_c++ 字符串分割

2013第四届蓝桥杯 C/C++本科A组 真题答案解析_2013年第四届c a组蓝桥杯省赛真题解答-程序员宅基地

文章浏览阅读2.3k次。1 .高斯日记 大数学家高斯有个好习惯:无论如何都要记日记。他的日记有个与众不同的地方,他从不注明年月日,而是用一个整数代替,比如:4210后来人们知道,那个整数就是日期,它表示那一天是高斯出生后的第几天。这或许也是个好习惯,它时时刻刻提醒着主人:日子又过去一天,还有多少时光可以用于浪费呢?高斯出生于:1777年4月30日。在高斯发现的一个重要定理的日记_2013年第四届c a组蓝桥杯省赛真题解答

基于供需算法优化的核极限学习机(KELM)分类算法-程序员宅基地

文章浏览阅读851次,点赞17次,收藏22次。摘要:本文利用供需算法对核极限学习机(KELM)进行优化,并用于分类。

metasploitable2渗透测试_metasploitable2怎么进入-程序员宅基地

文章浏览阅读1.1k次。一、系统弱密码登录1、在kali上执行命令行telnet 192.168.26.1292、Login和password都输入msfadmin3、登录成功,进入系统4、测试如下:二、MySQL弱密码登录:1、在kali上执行mysql –h 192.168.26.129 –u root2、登录成功,进入MySQL系统3、测试效果:三、PostgreSQL弱密码登录1、在Kali上执行psql -h 192.168.26.129 –U post..._metasploitable2怎么进入

Python学习之路:从入门到精通的指南_python人工智能开发从入门到精通pdf-程序员宅基地

文章浏览阅读257次。本文将为初学者提供Python学习的详细指南,从Python的历史、基础语法和数据类型到面向对象编程、模块和库的使用。通过本文,您将能够掌握Python编程的核心概念,为今后的编程学习和实践打下坚实基础。_python人工智能开发从入门到精通pdf

推荐文章

热门文章

相关标签