关于grid_search中param_grid可以选取哪些参数(以keras为例)_param_grid参数-程序员宅基地

技术标签: 学习  深度学习  神经网络  

关于grid_search中param_grid可以选取哪些参数(以keras为例)

最近在学习调参时看到了 grid_search (也就是网格搜索算法)

https://cloud.tencent.com/developer/article/1447855

细节可以见上面这篇文章
官方原话解释是

param_griddict or list of dictionaries
Dictionary with parameters names (string) as keys and lists of parameter settings to try as values, or a list of such dictionaries, in which case the grids spanned by each dictionary in the list are explored. This enables searching over any sequence of parameter settings.

param_grid中传入参数列表

找遍了官方地址也没有看到,找了很多例子有使用kernel、batchsize、epochs、optimizer的,后来在看到一篇文章时发现 keras 官方地址给出了详细解释,英文原话如下
When using scikit-learn’s grid_search API, legal tunable parameters are those you could pass to sk_params, including fitting parameters. In other words, you could use grid_search to search for the best batch_size or epochs as well as the model parameters.
意思就是当你用grid_search时,可以使用的参数就是那些可以传入sk_params中的参数,而sk_params是什么呢

keras.wrappers.scikit_learn.KerasRegressor(build_fn=None, **sk_params)

sk_params

*sk_params takes both model parameters and fitting parameters. Legal model parameters are the arguments of build_fn. Note that like all other estimators in scikit-learn, build_fn should provide default values for its arguments, so that you could create the estimator without passing any values to sk_params.

sk_params could also accept parameters for calling fit, predict, predict_proba, and score methods (e.g., epochs, batch_size). fitting (predicting) parameters are selected in the following order:*
可以接受的参数就是用于构建网络模型和用于fit、predict、score等方法中使用的参数,比如epochs和batch_size

举例:

def create_model(optimizer='sgd'):
    model = models.Sequential()  #需要使用
    model.add(Conv2D(64, (3, 3), padding='same', input_shape=x_shape, kernel_regularizer=regularizers.l2(weight_decay)))
    model.add(Activation('relu'))
    model.add(BatchNormalization())
    #model.add(Dropout(0.3))

    model.add(Conv2D(64, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
    model.add(Activation('relu'))
    model.add(BatchNormalization())

    model.add(MaxPooling2D(pool_size=(2, 2)))

    # model.add(Conv2D(128, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
    # model.add(Activation('relu'))
    # model.add(BatchNormalization())
    # #model.add(Dropout(0.4))
    #
    # model.add(Conv2D(128, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
    # model.add(Activation('relu'))
    # model.add(BatchNormalization())

    # model.add(MaxPooling2D(pool_size=(2, 2)))

    # model.add(Conv2D(256, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
    # model.add(Activation('relu'))
    # model.add(BatchNormalization())
    # #model.add(Dropout(0.4))
    #
    # model.add(Conv2D(256, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
    # model.add(Activation('relu'))
    # model.add(BatchNormalization())
    # #model.add(Dropout(0.4))
    #
    # model.add(Conv2D(256, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
    # model.add(Activation('relu'))
    # model.add(BatchNormalization())
    # model.add(MaxPooling2D(pool_size=(2, 2)))


    model.add(Conv2D(128, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
    model.add(Activation('relu'))
    model.add(BatchNormalization())
    #model.add(Dropout(0.4))

    # model.add(Conv2D(128, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
    # model.add(Activation('relu'))
    # model.add(BatchNormalization())
    #model.add(Dropout(0.4))

    model.add(Conv2D(128, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
    model.add(Activation('relu'))
    # model.add(BatchNormalization())

    model.add(MaxPooling2D(pool_size=(2, 2)))


    model.add(Conv2D(256, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
    model.add(Activation('relu'))
    # model.add(BatchNormalization())
    model.add(Dropout(0.4))

    #model.add(Dropout(0.4))

    model.add(Conv2D(256, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
    model.add(Activation('relu'))
    # model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2,2)))

    # model.add(Conv2D(256, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
    # model.add(Activation('relu'))
    # model.add(BatchNormalization())
    # model.add(Dropout(0.4))
    #
    # model.add(Conv2D(256, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
    # model.add(Activation('relu'))
    # model.add(BatchNormalization())
    # #model.add(Dropout(0.4))
    #
    # model.add(Conv2D(256, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
    # model.add(Activation('relu'))
    # model.add(BatchNormalization())
    # model.add(MaxPooling2D(pool_size=(2,2)))
    #
    model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
    model.add(Activation('relu'))
    model.add(BatchNormalization())
    model.add(Dropout(0.4))
    #
    model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
    model.add(Activation('relu'))
    model.add(BatchNormalization())
    model.add(Dropout(0.4))
    #
    # model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
    # model.add(Activation('relu'))
    # # model.add(BatchNormalization())
    # model.add(MaxPooling2D(pool_size=(2,2)))

    # model.add(Dropout(0.4))
    model.add(Flatten())
    model.add(Dense(512,kernel_regularizer=regularizers.l2(0.0001)))
    model.add(Activation('relu'))

    # model.add(Dropout(0.4))
    #model.add(Flatten())
    model.add(Dense(512,kernel_regularizer=regularizers.l2(0.0001)))
    model.add(Activation('relu'))
    # model.add(BatchNormalization())

    # model.add(Dropout(0.5))
    model.add(Dense(1))
    model.add(Activation('sigmoid')) #对于二分类的话需要使用这个
    model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
    return model

构建一个模型函数,这里要注意,你需要将你需要搜索的参数定义为函数的参数,否则之后 GridSearchCV 函数会报错,比如此处的 optimizer 便作为 creat_model 的参数传入函数

model = KerasClassifier(build_fn=create_model,)
batch_size = [1,10,32, 64]
epochs = [25, 40,60] #just get the param of what can use
optimizer = ['SGD', 'RMSprop', 'Adagrad', 'Adadelta', 'Adam'] #可以选择这个东西作为
param_grid = dict(batch_size=batch_size,epochs=epochs,optimizer=optimizer)
grid = GridSearchCV(estimator=model,param_grid=param_grid,n_jobs=1,scoring='accuracy')
x_train,X_test,y_train,y_test = train_test_split(data,label,random_state=10,test_size=0.25) #get the
grid_result = grid.fit(data,label)

由于 batch_size 与 epochs 均为 fit 方法的参数,于是不需要进行传入即可直接使用,这样一来你需要搜索的参数都可以通过函数传参来进行,其他的自己多试几次就能知道能不能使用了

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_43848469/article/details/104116815

智能推荐

稀疏编码的数学基础与理论分析-程序员宅基地

文章浏览阅读290次,点赞8次,收藏10次。1.背景介绍稀疏编码是一种用于处理稀疏数据的编码技术,其主要应用于信息传输、存储和处理等领域。稀疏数据是指数据中大部分元素为零或近似于零的数据,例如文本、图像、音频、视频等。稀疏编码的核心思想是将稀疏数据表示为非零元素和它们对应的位置信息,从而减少存储空间和计算复杂度。稀疏编码的研究起源于1990年代,随着大数据时代的到来,稀疏编码技术的应用范围和影响力不断扩大。目前,稀疏编码已经成为计算...

EasyGBS国标流媒体服务器GB28181国标方案安装使用文档-程序员宅基地

文章浏览阅读217次。EasyGBS - GB28181 国标方案安装使用文档下载安装包下载,正式使用需商业授权, 功能一致在线演示在线API架构图EasySIPCMSSIP 中心信令服务, 单节点, 自带一个 Redis Server, 随 EasySIPCMS 自启动, 不需要手动运行EasySIPSMSSIP 流媒体服务, 根..._easygbs-windows-2.6.0-23042316使用文档

【Web】记录巅峰极客2023 BabyURL题目复现——Jackson原生链_原生jackson 反序列化链子-程序员宅基地

文章浏览阅读1.2k次,点赞27次,收藏7次。2023巅峰极客 BabyURL之前AliyunCTF Bypassit I这题考查了这样一条链子:其实就是Jackson的原生反序列化利用今天复现的这题也是大同小异,一起来整一下。_原生jackson 反序列化链子

一文搞懂SpringCloud,详解干货,做好笔记_spring cloud-程序员宅基地

文章浏览阅读734次,点赞9次,收藏7次。微服务架构简单的说就是将单体应用进一步拆分,拆分成更小的服务,每个服务都是一个可以独立运行的项目。这么多小服务,如何管理他们?(服务治理 注册中心[服务注册 发现 剔除])这么多小服务,他们之间如何通讯?这么多小服务,客户端怎么访问他们?(网关)这么多小服务,一旦出现问题了,应该如何自处理?(容错)这么多小服务,一旦出现问题了,应该如何排错?(链路追踪)对于上面的问题,是任何一个微服务设计者都不能绕过去的,因此大部分的微服务产品都针对每一个问题提供了相应的组件来解决它们。_spring cloud

Js实现图片点击切换与轮播-程序员宅基地

文章浏览阅读5.9k次,点赞6次,收藏20次。Js实现图片点击切换与轮播图片点击切换<!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title></title> <script type="text/ja..._点击图片进行轮播图切换

tensorflow-gpu版本安装教程(过程详细)_tensorflow gpu版本安装-程序员宅基地

文章浏览阅读10w+次,点赞245次,收藏1.5k次。在开始安装前,如果你的电脑装过tensorflow,请先把他们卸载干净,包括依赖的包(tensorflow-estimator、tensorboard、tensorflow、keras-applications、keras-preprocessing),不然后续安装了tensorflow-gpu可能会出现找不到cuda的问题。cuda、cudnn。..._tensorflow gpu版本安装

随便推点

物联网时代 权限滥用漏洞的攻击及防御-程序员宅基地

文章浏览阅读243次。0x00 简介权限滥用漏洞一般归类于逻辑问题,是指服务端功能开放过多或权限限制不严格,导致攻击者可以通过直接或间接调用的方式达到攻击效果。随着物联网时代的到来,这种漏洞已经屡见不鲜,各种漏洞组合利用也是千奇百怪、五花八门,这里总结漏洞是为了更好地应对和预防,如有不妥之处还请业内人士多多指教。0x01 背景2014年4月,在比特币飞涨的时代某网站曾经..._使用物联网漏洞的使用者

Visual Odometry and Depth Calculation--Epipolar Geometry--Direct Method--PnP_normalized plane coordinates-程序员宅基地

文章浏览阅读786次。A. Epipolar geometry and triangulationThe epipolar geometry mainly adopts the feature point method, such as SIFT, SURF and ORB, etc. to obtain the feature points corresponding to two frames of images. As shown in Figure 1, let the first image be ​ and th_normalized plane coordinates

开放信息抽取(OIE)系统(三)-- 第二代开放信息抽取系统(人工规则, rule-based, 先抽取关系)_语义角色增强的关系抽取-程序员宅基地

文章浏览阅读708次,点赞2次,收藏3次。开放信息抽取(OIE)系统(三)-- 第二代开放信息抽取系统(人工规则, rule-based, 先关系再实体)一.第二代开放信息抽取系统背景​ 第一代开放信息抽取系统(Open Information Extraction, OIE, learning-based, 自学习, 先抽取实体)通常抽取大量冗余信息,为了消除这些冗余信息,诞生了第二代开放信息抽取系统。二.第二代开放信息抽取系统历史第二代开放信息抽取系统着眼于解决第一代系统的三大问题: 大量非信息性提取(即省略关键信息的提取)、_语义角色增强的关系抽取

10个顶尖响应式HTML5网页_html欢迎页面-程序员宅基地

文章浏览阅读1.1w次,点赞6次,收藏51次。快速完成网页设计,10个顶尖响应式HTML5网页模板助你一臂之力为了寻找一个优质的网页模板,网页设计师和开发者往往可能会花上大半天的时间。不过幸运的是,现在的网页设计师和开发人员已经开始共享HTML5,Bootstrap和CSS3中的免费网页模板资源。鉴于网站模板的灵活性和强大的功能,现在广大设计师和开发者对html5网站的实际需求日益增长。为了造福大众,Mockplus的小伙伴整理了2018年最..._html欢迎页面

计算机二级 考试科目,2018全国计算机等级考试调整,一、二级都增加了考试科目...-程序员宅基地

文章浏览阅读282次。原标题:2018全国计算机等级考试调整,一、二级都增加了考试科目全国计算机等级考试将于9月15-17日举行。在备考的最后冲刺阶段,小编为大家整理了今年新公布的全国计算机等级考试调整方案,希望对备考的小伙伴有所帮助,快随小编往下看吧!从2018年3月开始,全国计算机等级考试实施2018版考试大纲,并按新体系开考各个考试级别。具体调整内容如下:一、考试级别及科目1.一级新增“网络安全素质教育”科目(代..._计算机二级增报科目什么意思

conan简单使用_apt install conan-程序员宅基地

文章浏览阅读240次。conan简单使用。_apt install conan