论文阅读 (47):DTFD-MIL: Double-Tier Feature Distillation Multiple Instance Learning for Histopathology..-程序员宅基地

技术标签: MIL  # 多示例学习  因吉与皮卡墨  WSI  

0 引入

0.1 题目

  CVPR2022:用于组织病理学整片图像分类的双层特征蒸馏多实例学习 (DTFD-MIL: Double-tier feature distillation multiple Instance learning for histopathology whole slide image classification)

0.2 背景

  多示例学习 (MIL) 在病理学整片图像 (histopathology whole slide images, WSIs) 分类上的应用日趋成熟。然而,这样的针对性研究仍然面临一些困难,如小样本队列 (small sample cohorts) 。在此背景下,WSI图像 (包) 数量有限,且单张WSI的分辨率巨大,进一步导致海量的被裁剪区块 (实例)。
  Tips:不知小样本队列的表述是否准确;之前下载过WSI图像,单个样本可能就超过一个G,着实吓人

0.3 方法

  通过引入伪包 (pseudo-bags) 的概念来虚拟地增加包的数量,并在此基础上构建一个双层 (double-tier) MIL 框架以有效利用其内在特征。此外,在基于注意力的MIL框架下推导计算实例概率,并利用推导来帮助构建和分析所提出的框架。

0.4 Bib

@inproceedings{
    Zhang:2022:double,
author		=	{
    Hong Run Zhang and Yan Da Meng and Yi Tian Zhao and Yi Hong Qiao and Xiao Yun Yang and Sarah E Coupland and Ya Lin Zheng},
title		=	{
    {
    DTFD}-{
    MIL}: {
    D}ouble-tier feature distillation multiple instance learning for histopathology whole slide image classification},
journal		=	{
    Computer Vision and Pattern Recognition},
year		=	{
    2022}
}

1 引入

  整片图像 (WSI) 标注是计算机视觉领域的重大挑战之一,其在组织病理学中的广泛使用,促使了数字病理学对病理学家的工作流程和诊断决策的改进,同时也刺激了对 WSI 智能或自动分析工具的需求。单张WSI实在是太大了,从100M到10G不等。由于这样的独特性质,现有的机器学习方法,如自然图像和医学图像模型直接拿来主义实在是不现实;深度学习模型则需要大规模数据与高质量注释。But,像素级别的标注对WSI来说只能是( ̄▽ ̄)"。于是乎,这样的少量标注问题激发了深度学习研究者的极大热情,如弱监督与半监督,而大部分的弱监督WSI研究则可被刻画为MIL研究。在MIL框架下,一个WSI看作是一个包,其可包含成千上百的区块 (实例)。只要满足至少一个实例为正,则该WSI为正。
  在计算机视觉领域,已有多种方法对MIL问题进行尝试。然而,WSI 的先天特性决定了MIL下的WSI分类方案不如其他计算机视觉子领域那么简单,因为用于训练的唯一直接指导信息是几百张WSI的标签。这可能导致过拟合问题,即机器学习模型在优化过程中倾向于陷入局部最小值,而学习到的特征与目标疾病的相关性较低,从而降低模型的泛化能力。
  为解决过度拟合问题,MIL下WSI研究的指导思想是从较少标签中习得更多信息。互例关系 (mutual-instance relation) 是其中的一个有效方法,可以被指定为空间或特征距离,或者通过神经模块学习,如循环神经网络、变换器,以及图神经网络。
  已有的大多数方法可以被归类为基于注意力机制的 (attention-based, AB_MIL),其中的主要区别则在注意力分数的计算上。然而,在AB-MIL框架下明确推断实例概率被认为是不可行的,且作为替代方案,注意力分数通常用作正激活的指示。本文中,我们认为注意力分数不是用于此目的的严格度量,而是在AB-MIL框架下推导的实例概率
  给定一张超大号WSI,所直接处理的单元是从WSI中裁剪的极小区块。为WSI而生的MIL模型的目的则是去识别最与众不同的区块,因为它最可能触发包的标签。然而,WSI的数量较少,其中的区块却不胜其数,且标签信息是WSI级别的。此外,病理学WSI中,对应于病变区域的正实例往往只占据组织的一小部分,这进一步导致正实例的数量的极小的。因此,在极可能导致过拟合的情况下,去识别这些正实例还是让人兴奋啊

  近年来 ,尽管有很多方法利用互例信息来提升MIL性能,但是他们并没有明确地去解决上述由WSI本质特征所引发的问题。为了缓解这些问题的负面影响,我们于算法框架中引入伪包的概念,即随机划分一张WSI中的实例,划分结果则对应于伪包。每一个伪包将分配其父包,即原始包的标签。这样的方法可以有机地增加包的数量,而保证伪包中只有较少实例,这便是我们双层特征蒸馏MIL模型的伟大构想,如图1。特别需要说的是,一个1层级AB-MIL模型被应用于所有WSI的伪包中。然而,有一个风险问题是来自正包的伪包中其实可能没有正实例,这样它便被分配了一个错误的标签。
  扎心了啊老铁

图1:所提出方法与传统MIL的不同


  为了解决这个问题,我们从每一个伪包中蒸馏出一个特征向量,并在这些向量之类建立一个2层级AB-MIL模型,如图3。经过这样的蒸馏,1层级模型将提供清晰特征,以供2层级模型获取父包的更好表示。此外,对于特征蒸馏,我们利用为可视化深度学习特征Grad-CAM (基于梯度的类别激活图, grad-based class activation map) 模型的基本思想,在AB-MIL框架下推导出实例概率

图3:DTFD-MIL总体框架。一些实例的集合首先从WSI组织区域中裁剪,这里仅列举九个。所有的这些实例将进一步被划分,获取M (如3) 个伪包。1层级AB-MIL获取所有伪包的特征向量,并作为2层级AB-MIL的输入。包的真实标签则用于监督两层模型的预测标签


  本质上,我们从一个新奇的角度,即使用双层MIL框架来处理WSI问题,主要的贡献如下
  1)引入伪包的概念,以应对WSI不足的窘境;
  2)利用Grad-CAM的基本思想,从AB-MIL的角度出发直接推导出实例概率,这可以在未来中作为很多MIL方法的延申;
  3)通过实例概率的推到,制定了双层MIL框架,且在两个大型公开WSI数据集上展示了其优越性。

2 方法

2.1 回顾Grad-CAM和AB-MIL

2.1.1 Grad-CAM

  一个端到端的深度学习图像分类模型通常包含两个模块,即用于高级别特征提取的深度卷积网络 (deep convolution neural network, DCNN) 和用于分类的多层感知 (multi-layer perceptron, MLP)。一张图像投喂给DCNN后可以获取多个特征图,并可通过池化函数获取一个特征向量。这样特征向量再交给MLP,就可以获取类别概率啦,如图2 (a)

图2:(A) 深度学习图像分类模型说明。全局平均池化用于提取整张图像的特征图,并进一步获取特征向量。特征向量传递给MLP获取类别概率。(B) AB-MIL说明。实例的提取特征通过注意力得分加权,所有实例的加权平均结果作为包的新表示,进而交由MLP输出包预测。


  假设DCNN的输出特征图为 U ∈ R D × W × H U\in\mathbb{R}^{D\times W\times H} URD×W×H,其中 D D D是通道数, D D D H H H是维度大小。在 U U U上施加全局平均池化将获取表示包的特征向量:
f = GAP W , H ( U ) ∈ R D (1) \tag{1} \boldsymbol{f}=\text{GAP}_{W,H}(U)\in\mathbb{R}^D f=GAPW,H(U)RD(1)其中 GAP W , H ( U ) \text{GAP}_{W,H}(U) GAPW,H(U)表示关于 W , H W,H W,H的平均池化,即 f \boldsymbol{f} f的第 d d d个元素 f d = 1 W H ∑ w = 1 , h = 1 W , H U w , h d f_d=\frac{1}{WH}\sum_{w=1,h=1}^{W,H}U_{w,h}^d fd=WH1w=1,h=1W,HUw,hd。使用 f \boldsymbol{f} f作为输入,MLP将输出类别 c ∈ { 1 , 2 , c … , C } c\in\{1,2,c\dots,C\} c{ 1,2,c,C}的逻辑值 s c s^c sc,其表示当前属性属于 c c c类的信号强度,可通过softmax操作获取所预测的类别概率。基于Grad-CAM的第 c c c类类别激活图被定义为特征图的加权和:
L c = ∑ d D β d c U d , β d c = 1 W H ∑ w , h W , H ( ∂ s c ∂ U w , h d ) (2) \tag{2} \boldsymbol{L}^c=\sum_{d}^D\beta_d^cU^d,\qquad\beta_d^c=\frac{1}{WH}\sum_{w,h}^{W,H}\left( \frac{\partial s^c}{\partial U_{w,h}^d} \right) Lc=dDβdcUd,βdc=WH1w,hW,H(Uw,hdsc)(2)其中 L c ∈ R W × H \boldsymbol{L}^c\in\mathbb{R}^{W\times H} LcRW×H L w , h c L_{w,h}^c Lw,hc L c \boldsymbol{L}^c Lc是在位置 w , h w,h w,h的幅度值,表示这个位置趋同于类别 c c c的强烈程度:
L w , h c = ∑ d = 1 D β d c U w , h d (3) \tag{3} L_{w,h}^c=\sum_{d=1}^D\beta_d^cU_{w,h}^d Lw,hc=d=1DβdcUw,hd(3)

2.1.2 AB-MIL

  给定有 K K K个实例的包 X = { x 1 , x 2 , … , x K } X=\{x_1,x_2,\dots,x_K\} X={ x1,x2,,xK},每个实例 x k , k ∈ 1 , 2 , … , K x_k,k\in1,2,\dots,K xk,k1,2,,K持有隐藏标签 y k y_k yk (不可知的),其中 y k = 1 y_k=1 yk=1表示正, = 0 =0 =0表示负。MIL的目标是检测包中是否至少包含一个正实例。在训练阶段唯一能使用的是包标签,其被定义为:
Y = { 1 , if  ∑ k = 1 K y k > 0 0 , otherwise (4) \tag{4} Y=\left\{ \begin{array}{ll} 1,&\qquad \text{if}\ \sum_{k=1}^Ky_k>0\\ 0,&\qquad\text{otherwise} \end{array} \right. Y={ 1,0,if k=1Kyk>0otherwise(4)解决该问题的一个简单方法是为实例分配相应包的标签,并由此训练分类器,最终通过平均池化或者最大池化汇聚实例预测结果为包标签。另一个策略是学习包表示 F \boldsymbol{F} F,从而将该问题简化为传统的分类任务。这种策略更为有效,可以看作是MIL嵌入学习的一种。包嵌入则被定制为:
F = G ( { h k ∣ k = 1 , 2 , … , K } ) (5) \tag{5} \boldsymbol{F}=\text{G}(\{\boldsymbol{h_k|k=1,2,\dots,K}\}) F=G({ hkk=1,2,,K})(5)其中 G \text{G} G是汇聚函数, h k ∈ R d \boldsymbol{h}_k\in\mathbb{R}^d hkRd是实例 k k k的提取特征。典型的汇聚函数是注意力机制:
F = ∑ k = 1 K α k h k ∈ R D (6) \tag{6} \boldsymbol{F}=\sum_{k=1}^K\alpha_k\boldsymbol{h}_k\in\mathbb{R}^D F=k=1KαkhkRD(6)其中 α k \alpha_k αk是实例 h k \boldsymbol{h}_k hk的习得权重, D D D是向量 F \boldsymbol{F} F h k \boldsymbol{h}_k hk的维度。这样的一个机制如图2 (b)所示。注意力得分的计算有多种,例如经典AB-MIL的权重计算为:
α k = exp ⁡ { w T ( tanh ⁡ ( V 1 h k ) ⊙ sigm ( V 2 h k ) ) } ∑ j = 1 K exp ⁡ { w T ( tanh ⁡ ( V 1 h j ) ⊙ sigm ( V 2 h j ) ) } (7) \tag{7} \alpha_k=\frac{\exp\{ \boldsymbol{w}^T(\tanh (\boldsymbol{V}_1\boldsymbol{h}_k) \odot\text{sigm}(\boldsymbol{V}_2\boldsymbol{h}_k)) \}}{\sum_{j=1}^K\exp\{ \boldsymbol{w}^T(\tanh (\boldsymbol{V}_1\boldsymbol{h}_j) \odot\text{sigm}(\boldsymbol{V}_2\boldsymbol{h}_j)) \}} αk=j=1Kexp{ wT(tanh(V1hj)sigm(V2hj))}exp{ wT(tanh(V1hk)sigm(V2hk))}(7)其中 w \boldsymbol{w} w V 1 \boldsymbol{V}_1 V1,以及 V 2 \boldsymbol{V}_2 V2是习得参数。

2.2 AB-MIL中实例概率的推导

  尽管MIL包嵌入方法性能卓越,但是其在计算实例类别概率时似乎是不可行的。本文则证明了在AB-MIL中获取单个实例的预测概率是可行的,证明略。因此,应用Grad-CAM到AB-MIL来直接推断实例属于某个确定类别的信号强度是可行的。与公式2类似,实例 k k k归属于类别 c c c信号强度可以被记作:
L k c = ∑ d = 1 D β d c h ^ k , d , β d c = 1 K ∑ i = 1 K ∂ s c ∂ h ^ k , d (8) \tag{8} L_k^c=\sum_{d=1}^D\beta_d^c\hat{h}_{k,d},\qquad\beta_{d}^c=\frac{1}{K}\sum_{i=1}^K\frac{\partial s_c}{\partial\hat{h}_{k,d}} Lkc=d=1Dβdch^k,d,βdc=K1i=1Kh^k,dsc(8)其中 s c s_c sc是MIL分类器关于类别 c c c的输出逻辑、 h ^ k , d \hat{h}_{k,d} h^k,d h ^ k \hat{\boldsymbol{h}}_k h^k的元素,以及 h ^ k = α k K h k \hat{\boldsymbol{h}}_k=\alpha_kK\boldsymbol{h}_k h^k=αkKhk。通过运用softmax函数,实例属于第 c c c的预测概率为:
p k c = exp ⁡ ( L k c ) ∑ t = 1 C exp ⁡ ( L k t ) (9) \tag{9} p_k^c=\frac{\exp(L_k^c)}{\sum_{t=1}^C\exp(L_k^t)} pkc=t=1Cexp(Lkt)exp(Lkc)(9)

2.3 双层特征蒸馏MIL

  给定 N N N个包 (WSI),每个包有 K n K_n Kn个实例,即 X n = { x n , k ∣ k = 1 , 2 , … , K n } , n ∈ { 1 , 2 , … , N } \boldsymbol{X}_n=\{ x_{n,k} | k=1,2,\dots,K_n\},n\in\{ 1,2,\dots,N \} Xn={ xn,kk=1,2,,Kn},n{ 1,2,,N} Y n Y_n Yn则表示包的真实标签。每一个实例对应的特征记作 h n , k \boldsymbol{h}_{n,k} hn,k,其由神经网络 H \mathbf{H} H提取,即 h n , k = H ( x n , k ) \boldsymbol{h}_{n,k}=\boldsymbol{H}(x_{n,k}) hn,k=H(xn,k)。每个包中的实例被随机划分为 M M M个伪包,包中的实例大致为偶数, X n = { X n m ∣ m = 1 , 2 , … , M } \boldsymbol{X}_n=\{ \boldsymbol{X}_n^m | m = 1,2,\dots,M \} Xn={ Xnmm=1,2,,M}。伪包的标签被标记为其父包的标签,即 Y n m = Y n Y_n^m=Y_n Ynm=Yn。1层级AB-MIL模型记作 T 1 \text{T}_1 T1,被用于处理每个伪包,则每个伪包通过 T 1 \text{T}_1 T1获取的包概率为:
y n m = T 1 ( { h k = H ( x k ) ∣ x k ∈ X n m } ) (10) \tag{10} y_n^m=\text{T}_1(\{ \boldsymbol{h}_k = \mathbf{H}(x_k)|x_k\in\boldsymbol{X}_n^m \}) ynm=T1({ hk=H(xk)xkXnm})(10)   T 1 \text{T}_1 T1层的损失函数基于交叉熵定义:
L 1 = − f r a c 1 M N ∑ n = 1 , m = 1 N , M Y n m log ⁡ y n m + ( 1 − Y n m ) log ⁡ ( 1 − y n m ) (11) \tag{11} \mathcal{L}_1=-frac{1}{MN}\sum_{n=1,m=1}^{N,M}Y_n^m\log y_n^m+(1-Y_n^m)\log(1-y_n^m) L1=frac1MNn=1,m=1N,MYnmlogynm+(1Ynm)log(1ynm)(11)随后伪包中每个实例的概率通过公式8–9获得。基于实例概率,每个伪包的特征向量可以被获得,其中第 n n n个包的第 m m m个伪包的蒸馏结果表示为 f ^ n m \hat{\boldsymbol{f}}_n^m f^nm。所有的蒸馏结果则传递给2层级AB-MIL T 2 \text{T}_2 T2,其结果便是每个包标签的推断:
y ^ n = T 2 ( { f ^ n m ∣ m ∈ ( 1 , 2 , … , M ) } ) (12) \tag{12} \hat{y}_n=\text{T}_2\left( \left\{ \hat{\boldsymbol{f}}_n^m | m \in (1,2,\dots,M) \right\} \right) y^n=T2({ f^nmm(1,2,,M)})(12)   T 2 \text{T}_2 T2的损失被定义为:
L 2 = 1 N ∑ n = 1 N Y n log ⁡ y ^ n + ( 1 − Y n ) log ⁡ ( 1 − y ^ n ) (13) \tag{13} \mathcal{L}_2=\frac{1}{N}\sum_{n=1}^NY_n\log\hat{y}_n+(1-Y_n)\log(1-\hat{y}_n) L2=N1n=1NYnlogy^n+(1Yn)log(1y^n)(13)  分类的总体损失为:
L = arg min ⁡ θ 1 L 1 + arg min ⁡ θ 2 L 2 (14) \tag{14} \mathcal{L}=\argmin_{\boldsymbol{\theta}_1}\mathcal{L}_1+\argmin_{\boldsymbol{\theta}_2}\mathcal{L}_2 L=θ1argminL1+θ2argminL2(14)其中 θ 1 \boldsymbol{\theta}_1 θ1 θ 2 \boldsymbol{\theta}_2 θ2是网络参数。
  需要注意的是伪包中有大量的噪声标签,随机划分并不能保证每一个正伪包中都至少包含一个正实例。而深度学习对噪声标签是有一个容忍度的。此外,噪声等级可以粗略与 M M M挂钩,之后也会使用消融实验来评估 M M M对最终性能的影响。
  四种特征蒸馏策略将被考虑:
  MaxS (maximum selection): T 1 \text{T}_1 T1处理后,伪包中具有最大正概率实例的特征传递给 T 2 \text{T}_2 T2
  MaxMinS (maxMin selection):选两个;
  MAS (maximum attention score selection):选具有最大注意力得分的;
  AFS (aggregated feature selection):通过公式6汇聚。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_44575152/article/details/124280361

智能推荐

Docker 快速上手学习入门教程_docker菜鸟教程-程序员宅基地

文章浏览阅读2.5w次,点赞6次,收藏50次。官方解释是,docker 容器是机器上的沙盒进程,它与主机上的所有其他进程隔离。所以容器只是操作系统中被隔离开来的一个进程,所谓的容器化,其实也只是对操作系统进行欺骗的一种语法糖。_docker菜鸟教程

电脑技巧:Windows系统原版纯净软件必备的两个网站_msdn我告诉你-程序员宅基地

文章浏览阅读5.7k次,点赞3次,收藏14次。该如何避免的,今天小编给大家推荐两个下载Windows系统官方软件的资源网站,可以杜绝软件捆绑等行为。该站提供了丰富的Windows官方技术资源,比较重要的有MSDN技术资源文档库、官方工具和资源、应用程序、开发人员工具(Visual Studio 、SQLServer等等)、系统镜像、设计人员工具等。总的来说,这两个都是非常优秀的Windows系统镜像资源站,提供了丰富的Windows系统镜像资源,并且保证了资源的纯净和安全性,有需要的朋友可以去了解一下。这个非常实用的资源网站的创建者是国内的一个网友。_msdn我告诉你

vue2封装对话框el-dialog组件_<el-dialog 封装成组件 vue2-程序员宅基地

文章浏览阅读1.2k次。vue2封装对话框el-dialog组件_

MFC 文本框换行_c++ mfc同一框内输入二行怎么换行-程序员宅基地

文章浏览阅读4.7k次,点赞5次,收藏6次。MFC 文本框换行 标签: it mfc 文本框1.将Multiline属性设置为True2.换行是使用"\r\n" (宽字符串为L"\r\n")3.如果需要编辑并且按Enter键换行,还要将 Want Return 设置为 True4.如果需要垂直滚动条的话将Vertical Scroll属性设置为True,需要水平滚动条的话将Horizontal Scroll属性设_c++ mfc同一框内输入二行怎么换行

redis-desktop-manager无法连接redis-server的解决方法_redis-server doesn't support auth command or ismis-程序员宅基地

文章浏览阅读832次。检查Linux是否是否开启所需端口,默认为6379,若未打开,将其开启:以root用户执行iptables -I INPUT -p tcp --dport 6379 -j ACCEPT如果还是未能解决,修改redis.conf,修改主机地址:bind 192.168.85.**;然后使用该配置文件,重新启动Redis服务./redis-server redis.conf..._redis-server doesn't support auth command or ismisconfigured. try

实验四 数据选择器及其应用-程序员宅基地

文章浏览阅读4.9k次。济大数电实验报告_数据选择器及其应用

随便推点

灰色预测模型matlab_MATLAB实战|基于灰色预测河南省社会消费品零售总额预测-程序员宅基地

文章浏览阅读236次。1研究内容消费在生产中占据十分重要的地位,是生产的最终目的和动力,是保持省内经济稳定快速发展的核心要素。预测河南省社会消费品零售总额,是进行宏观经济调控和消费体制改变创新的基础,是河南省内人民对美好的全面和谐社会的追求的要求,保持河南省经济稳定和可持续发展具有重要意义。本文建立灰色预测模型,利用MATLAB软件,预测出2019年~2023年河南省社会消费品零售总额预测值分别为21881...._灰色预测模型用什么软件

log4qt-程序员宅基地

文章浏览阅读1.2k次。12.4-在Qt中使用Log4Qt输出Log文件,看这一篇就足够了一、为啥要使用第三方Log库,而不用平台自带的Log库二、Log4j系列库的功能介绍与基本概念三、Log4Qt库的基本介绍四、将Log4qt组装成为一个单独模块五、使用配置文件的方式配置Log4Qt六、使用代码的方式配置Log4Qt七、在Qt工程中引入Log4Qt库模块的方法八、获取示例中的源代码一、为啥要使用第三方Log库,而不用平台自带的Log库首先要说明的是,在平时开发和调试中开发平台自带的“打印输出”已经足够了。但_log4qt

100种思维模型之全局观思维模型-67_计算机中对于全局观的-程序员宅基地

文章浏览阅读786次。全局观思维模型,一个教我们由点到线,由线到面,再由面到体,不断的放大格局去思考问题的思维模型。_计算机中对于全局观的

线程间控制之CountDownLatch和CyclicBarrier使用介绍_countdownluach于cyclicbarrier的用法-程序员宅基地

文章浏览阅读330次。一、CountDownLatch介绍CountDownLatch采用减法计算;是一个同步辅助工具类和CyclicBarrier类功能类似,允许一个或多个线程等待,直到在其他线程中执行的一组操作完成。二、CountDownLatch俩种应用场景: 场景一:所有线程在等待开始信号(startSignal.await()),主流程发出开始信号通知,既执行startSignal.countDown()方法后;所有线程才开始执行;每个线程执行完发出做完信号,既执行do..._countdownluach于cyclicbarrier的用法

自动化监控系统Prometheus&Grafana_-自动化监控系统prometheus&grafana实战-程序员宅基地

文章浏览阅读508次。Prometheus 算是一个全能型选手,原生支持容器监控,当然监控传统应用也不是吃干饭的,所以就是容器和非容器他都支持,所有的监控系统都具备这个流程,_-自动化监控系统prometheus&grafana实战

React 组件封装之 Search 搜索_react search-程序员宅基地

文章浏览阅读4.7k次。输入关键字,可以通过键盘的搜索按钮完成搜索功能。_react search