NLP 使用Word2vec实现文本分类_word2vec 使用-程序员宅基地

技术标签: 自然语言处理  word2vec  分类  

本文为[365天深度学习训练营学习记录博客
 
参考文章:365天深度学习训练营
 
原作者:[K同学啊 | 接辅导、项目定制]\n 文章来源:[K同学的学习圈子](https://www.yuque.com/mingtian-fkmxf/zxwb45)

一、加载数据 

import torch
import torch.nn as nn
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warnings
 
warnings.filterwarnings("ignore")             #忽略警告信息
 
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

import pandas as pd
 
# 加载自定义中文数据
train_data = pd.read_csv('D:/train.csv', sep='\t', header=None)
print(train_data)

 二、构造数据迭代器

# 构造数据集迭代器
def coustom_data_iter(texts, labels):
    for x, y in zip(texts, labels):
        yield x, y
        
x = train_data[0].values[:]
#多类标签的one-hot展开
y = train_data[1].values[:]
print(x,"\n",y)

yield x, y:使用 yield 关键字,将每次迭代得到的 (x, y) 元组作为迭代器的输出。yield 的作用类似于 return,但不同之处在于它会暂停函数的执行,并将结果发送给调用方,但函数的状态会被保留,以便下次调用时从上次离开的地方继续执行。 

 三、构建词典

from gensim.models.word2vec import Word2Vec
import numpy as np
 
# 训练 Word2Vec 浅层神经网络模型
w2v = Word2Vec(vector_size=100, #是指特征向量的维度,默认为100。
               min_count=3)     #可以对字典做截断. 词频少于min_count次数的单词会被丢弃掉, 默认值为5。
 
w2v.build_vocab(x)
w2v.train(x,                         
          total_examples=w2v.corpus_count, 
          epochs=20)
          

Word2Vec可以直接训练模型,一步到位。这里分了三步

  • Word2Vec(vector_size=100, min_count=3): 创建了一个Word2Vec对象,设置了词向量的维度为100,同时设置了词频最小值为3,即只有在训练语料中出现次数不少于3次的词才会被考虑。

  • w2v.build_vocab(x): 使用 build_vocab 方法根据输入的文本数据 x 构建词典。build_vocab 方法会统计输入文本中每个词汇出现的次数,并按照词频从高到低的顺序将词汇加入词典中。

  • w2v.train(x, total_examples=w2v.corpus_count, epochs=20): 训练Word2Vec模型,其中:

  1. x是训练数据。
  2. total_examples=w2v.corpus_count:total_examples 参数指定了训练时使用的文本数量,这里使用的是 w2v.corpus_count 属性,表示输入文本的数量
  3. epochs=20指定了训练的轮数,每轮对整个数据集进行一次训练。
# 将文本转化为向量
def average_vec(text):
    vec = np.zeros(100).reshape((1, 100))
    for word in text:
        try:
            vec += w2v.wv[word].reshape((1, 100))
        except KeyError:
            continue
    return vec
 
# 将词向量保存为 Ndarray
x_vec = np.concatenate([average_vec(z) for z in x])
 
# 保存 Word2Vec 模型及词向量
w2v.save('w2v_model.pkl')

这段代码逐步完成了将文本转化为词向量的过程,并保存了Word2Vec模型及词向量。

  1. average_vec(text): 这个函数接受一个文本列表作为输入,并返回一个平均词向量。它首先创建了一个形状为 (1, 100) 的全零NumPy数组 vec,用于存储文本的词向量的累加和。然后,它遍历文本中的每个词,尝试从已经训练好的Word2Vec模型中获取词向量,如果词在模型中存在,则将其词向量加到 vec 中。如果词不在模型中(KeyError异常),则跳过该词。最后,返回词向量的平均值。

  2. x_vec = np.concatenate([average_vec(z) for z in x]): 这一行代码使用列表推导式,对数据集中的每个文本 z 调用 average_vec 函数,得到文本的词向量表示。然后,使用 np.concatenate 函数将这些词向量连接成一个大的NumPy数组 x_vec。这个数组的形状是 (样本数, 100),其中样本数是数据集中文本的数量。

  3. w2v.save('w2v_model.pkl'): 这一行代码保存了训练好的Word2Vec模型及词向量。w2v.save() 方法将整个Word2Vec模型保存到文件中。

train_iter = coustom_data_iter(x_vec, y)
print(len(x),len(x_vec))
  1. train_iter = coustom_data_iter(x_vec, y): 这行代码创建了一个名为 train_iter 的迭代器,用于迭代训练数据。它调用了一个名为 coustom_data_iter 的函数,该函数接受两个参数 x_vecy,分别表示训练样本的特征和标签。在这个上下文中,x_vec 是一个NumPy数组,包含了训练样本的特征向量表示,y 是一个数组,包含了训练样本的标签。该迭代器将用于训练模型。

  2. print(len(x),len(x_vec)): 这行代码打印了训练数据的长度,即 x 的长度和 x_vec 的长度。在这里,len(x) 表示训练样本的数量,len(x_vec) 表示每个样本的特征向量的长度(通常表示特征的维度)。这行代码的目的是用于验证数据的准备是否正确,以及特征向量的维度是否与预期一致。

 

label_name = list(set(train_data[1].values[:]))
print(label_name)

 四、生成数据批次和迭代器

text_pipeline  = lambda x: average_vec(x)
label_pipeline = lambda x: label_name.index(x)
print(text_pipeline("你在干嘛"))
print(label_pipeline("Travel-Query"))
  1. text_pipeline = lambda x: average_vec(x): 这一行定义了一个名为 text_pipeline 的匿名函数(lambda函数),它接受一个参数 x(文本数据)。在函数体内部,它调用了前面定义的 average_vec 函数,将文本数据 x 转换为词向量的平均值。

  2. label_pipeline = lambda x: label_name.index(x): 这一行定义了另一个匿名函数 label_pipeline,它接受一个参数 x,该参数表示标签数据。在函数体内部,它调用了 index 方法来查找标签在 label_name 列表中的索引,并返回该索引值。

  3. print(text_pipeline("你在干嘛")): 这行代码调用了 text_pipeline 函数,将字符串 "你在干嘛" 作为参数传递给函数。函数会将这个文本转换为词向量的平均值,并打印出来。

  4. print(label_pipeline("Travel-Query")): 这行代码调用了 label_pipeline 函数,将字符串 "Travel-Query" 作为参数传递给函数。函数会在 label_name 列表中查找 "Travel-Query" 的索引,并打印出来。

 

from torch.utils.data import DataLoader
 
def collate_batch(batch):
    label_list, text_list= [], []
    
    for (_text, _label) in batch:
        # 标签列表
        label_list.append(label_pipeline(_label))
        
        # 文本列表
        processed_text = torch.tensor(text_pipeline(_text), dtype=torch.float32)
        text_list.append(processed_text)
 
    label_list = torch.tensor(label_list, dtype=torch.int64)
    text_list  = torch.cat(text_list)
    
    return text_list.to(device),label_list.to(device)
 
# 数据加载器,调用示例
dataloader = DataLoader(train_iter,
                        batch_size=8,
                        shuffle   =False,
                        collate_fn=collate_batch)
  1. text_pipeline = lambda x: average_vec(x): 这行代码创建了一个名为 text_pipeline 的匿名函数,该函数接受一个参数 x,表示文本数据。在这里,text_pipeline 函数被定义为 average_vec(x),即调用之前定义的 average_vec 函数,用来将文本转换为向量表示。

  2. label_pipeline = lambda x: label_name.index(x): 这行代码创建了一个名为 label_pipeline 的匿名函数,该函数接受一个参数 x,表示标签数据。在这里,label_pipeline 函数被定义为 label_name.index(x),即查找 xlabel_name 列表中的索引,返回其索引值作为标签的表示。

  3. collate_batch(batch): 这是一个自定义的函数,用于处理一个批次(batch)的数据。它接受一个批次的数据作为输入,并对数据进行处理,最后返回处理后的文本和标签列表。

  4. collate_batch 函数中:

    • 首先,创建了两个空列表 label_listtext_list,用于存储标签和文本数据。
    • 然后,对批次中的每个样本进行遍历,提取样本的文本和标签。
    • 对于标签部分,调用了 label_pipeline 函数将标签转换为模型可接受的格式,并添加到 label_list 中。
    • 对于文本部分,调用了 text_pipeline 函数将文本转换为向量表示,并转换为 PyTorch 张量格式,并添加到 text_list 中。
    • 最后,将 label_list 转换为 PyTorch 整数张量格式,将 text_list 进行拼接并转换为 PyTorch 浮点数张量格式,并返回这两个张量。
  5. dataloader = DataLoader(train_iter, batch_size=8, shuffle=False, collate_fn=collate_batch): 这行代码创建了一个 PyTorch 的数据加载器 DataLoader,用于加载训练数据。其中参数说明如下:

    • train_iter 是之前定义的用于迭代训练数据的迭代器。
    • batch_size=8 指定了每个批次的样本数量为 8。
    • shuffle=False 表示不对数据进行洗牌,即不打乱样本的顺序。
    • collate_fn=collate_batch 指定了数据加载器在每个批次加载数据时调用的数据处理函数为 collate_batch 函数,用于处理每个批次的数据。

 

五、构建模型

from torch import nn
 
class TextClassificationModel(nn.Module):
 
    def __init__(self, num_class):
        super(TextClassificationModel, self).__init__()
        self.fc = nn.Linear(100, num_class)
 
    def forward(self, text):
        return self.fc(text)

num_class  = len(label_name)
vocab_size = 100000
em_size    = 12
model      = TextClassificationModel(num_class).to(device)

import time
 
def train(dataloader):
    model.train()  # 切换为训练模式
    total_acc, train_loss, total_count = 0, 0, 0
    log_interval = 50
    start_time   = time.time()
 
    for idx, (text,label) in enumerate(dataloader):
        predicted_label = model(text)
        
        optimizer.zero_grad()                    # grad属性归零
        loss = criterion(predicted_label, label) # 计算网络输出和真实值之间的差距,label为真实值
        loss.backward()                          # 反向传播
        torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1) # 梯度裁剪
        optimizer.step()  # 每一步自动更新
        
        # 记录acc与loss
        total_acc   += (predicted_label.argmax(1) == label).sum().item()
        train_loss  += loss.item()
        total_count += label.size(0)
        
        if idx % log_interval == 0 and idx > 0:
            elapsed = time.time() - start_time
            print('| epoch {:1d} | {:4d}/{:4d} batches '
                  '| train_acc {:4.3f} train_loss {:4.5f}'.format(epoch, idx,len(dataloader),
                                              total_acc/total_count, train_loss/total_count))
            total_acc, train_loss, total_count = 0, 0, 0
            start_time = time.time()
 
def evaluate(dataloader):
    model.eval()  # 切换为测试模式
    total_acc, train_loss, total_count = 0, 0, 0
 
    with torch.no_grad():
        for idx, (text,label) in enumerate(dataloader):
            predicted_label = model(text)
            
            loss = criterion(predicted_label, label)  # 计算loss值
            # 记录测试数据
            total_acc   += (predicted_label.argmax(1) == label).sum().item()
            train_loss  += loss.item()
            total_count += label.size(0)
            
    return total_acc/total_count, train_loss/total_count

六、训练模型

from torch.utils.data.dataset  import random_split
from torchtext.data.functional import to_map_style_dataset
# 超参数
EPOCHS     = 10 # epoch
LR         = 5  # 学习率
BATCH_SIZE = 64 # batch size for training
 
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.1)
total_accu = None
 
# 构建数据集
train_iter    = coustom_data_iter(train_data[0].values[:], train_data[1].values[:])
train_dataset = to_map_style_dataset(train_iter)
 
split_train_, split_valid_ = random_split(train_dataset,
                                          [int(len(train_dataset)*0.8),int(len(train_dataset)*0.2)])
 
train_dataloader = DataLoader(split_train_, batch_size=BATCH_SIZE,
                              shuffle=True, collate_fn=collate_batch)
 
valid_dataloader = DataLoader(split_valid_, batch_size=BATCH_SIZE,
                              shuffle=True, collate_fn=collate_batch)
 
for epoch in range(1, EPOCHS + 1):
    epoch_start_time = time.time()
    train(train_dataloader)
    val_acc, val_loss = evaluate(valid_dataloader)
    
    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    
    if total_accu is not None and total_accu > val_acc:
        scheduler.step()
    else:
        total_accu = val_acc
    print('-' * 69)
    print('| epoch {:1d} | time: {:4.2f}s | '
          'valid_acc {:4.3f} valid_loss {:4.3f} | lr {:4.6f}'.format(epoch,
                                           time.time() - epoch_start_time,
                                           val_acc,val_loss,lr))
 
    print('-' * 69)

test_acc, test_loss = evaluate(valid_dataloader)
print('模型准确率为:{:5.4f}'.format(test_acc))
| epoch 1 |   50/ 152 batches | train_acc 0.732 train_loss 0.02655
| epoch 1 |  100/ 152 batches | train_acc 0.822 train_loss 0.01889
| epoch 1 |  150/ 152 batches | train_acc 0.838 train_loss 0.01798
---------------------------------------------------------------------
| epoch 1 | time: 0.93s | valid_acc 0.812 valid_loss 0.019 | lr 5.000000
---------------------------------------------------------------------
| epoch 2 |   50/ 152 batches | train_acc 0.840 train_loss 0.01745
| epoch 2 |  100/ 152 batches | train_acc 0.843 train_loss 0.01807
| epoch 2 |  150/ 152 batches | train_acc 0.843 train_loss 0.01846
---------------------------------------------------------------------
| epoch 2 | time: 1.01s | valid_acc 0.854 valid_loss 0.020 | lr 5.000000
---------------------------------------------------------------------
| epoch 3 |   50/ 152 batches | train_acc 0.850 train_loss 0.01770
| epoch 3 |  100/ 152 batches | train_acc 0.850 train_loss 0.01675
| epoch 3 |  150/ 152 batches | train_acc 0.859 train_loss 0.01565
---------------------------------------------------------------------
| epoch 3 | time: 0.98s | valid_acc 0.836 valid_loss 0.023 | lr 5.000000
---------------------------------------------------------------------
| epoch 4 |   50/ 152 batches | train_acc 0.898 train_loss 0.00972
| epoch 4 |  100/ 152 batches | train_acc 0.892 train_loss 0.00936
| epoch 4 |  150/ 152 batches | train_acc 0.900 train_loss 0.00948
---------------------------------------------------------------------
| epoch 4 | time: 0.91s | valid_acc 0.879 valid_loss 0.011 | lr 0.500000
---------------------------------------------------------------------
| epoch 5 |   50/ 152 batches | train_acc 0.911 train_loss 0.00679
| epoch 5 |  100/ 152 batches | train_acc 0.899 train_loss 0.00786
| epoch 5 |  150/ 152 batches | train_acc 0.903 train_loss 0.00752
---------------------------------------------------------------------
| epoch 5 | time: 0.91s | valid_acc 0.879 valid_loss 0.010 | lr 0.500000
---------------------------------------------------------------------
| epoch 6 |   50/ 152 batches | train_acc 0.905 train_loss 0.00692
| epoch 6 |  100/ 152 batches | train_acc 0.915 train_loss 0.00595
| epoch 6 |  150/ 152 batches | train_acc 0.910 train_loss 0.00615
---------------------------------------------------------------------
| epoch 6 | time: 0.90s | valid_acc 0.880 valid_loss 0.010 | lr 0.050000
---------------------------------------------------------------------
| epoch 7 |   50/ 152 batches | train_acc 0.907 train_loss 0.00615
| epoch 7 |  100/ 152 batches | train_acc 0.911 train_loss 0.00602
| epoch 7 |  150/ 152 batches | train_acc 0.908 train_loss 0.00632
---------------------------------------------------------------------
| epoch 7 | time: 0.92s | valid_acc 0.881 valid_loss 0.009 | lr 0.050000
---------------------------------------------------------------------
| epoch 8 |   50/ 152 batches | train_acc 0.903 train_loss 0.00656
| epoch 8 |  100/ 152 batches | train_acc 0.915 train_loss 0.00582
| epoch 8 |  150/ 152 batches | train_acc 0.912 train_loss 0.00578
---------------------------------------------------------------------
| epoch 8 | time: 0.93s | valid_acc 0.881 valid_loss 0.009 | lr 0.050000
---------------------------------------------------------------------
| epoch 9 |   50/ 152 batches | train_acc 0.903 train_loss 0.00653
| epoch 9 |  100/ 152 batches | train_acc 0.913 train_loss 0.00595
| epoch 9 |  150/ 152 batches | train_acc 0.914 train_loss 0.00549
---------------------------------------------------------------------
| epoch 9 | time: 0.93s | valid_acc 0.877 valid_loss 0.009 | lr 0.050000
---------------------------------------------------------------------
| epoch 10 |   50/ 152 batches | train_acc 0.911 train_loss 0.00565
| epoch 10 |  100/ 152 batches | train_acc 0.908 train_loss 0.00584
| epoch 10 |  150/ 152 batches | train_acc 0.909 train_loss 0.00604
---------------------------------------------------------------------
| epoch 10 | time: 0.91s | valid_acc 0.878 valid_loss 0.009 | lr 0.005000
---------------------------------------------------------------------
模型准确率为:0.8781

七、测试指定数据 

def predict(text, text_pipeline):
    with torch.no_grad():
        text = torch.tensor(text_pipeline(text), dtype=torch.float32)
        print(text.shape)
        output = model(text)
        return output.argmax(1).item()
 
# ex_text_str = "随便播放一首专辑阁楼里的佛里的歌"
ex_text_str = "还有双鸭山到淮阴的汽车票吗13号的"
 
model = model.to("cpu")
 
print("该文本的类别是:%s" %label_name[predict(ex_text_str, text_pipeline)])

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_60245590/article/details/136242882

智能推荐

分布式光纤传感器的全球与中国市场2022-2028年:技术、参与者、趋势、市场规模及占有率研究报告_预计2026年中国分布式传感器市场规模有多大-程序员宅基地

文章浏览阅读3.2k次。本文研究全球与中国市场分布式光纤传感器的发展现状及未来发展趋势,分别从生产和消费的角度分析分布式光纤传感器的主要生产地区、主要消费地区以及主要的生产商。重点分析全球与中国市场的主要厂商产品特点、产品规格、不同规格产品的价格、产量、产值及全球和中国市场主要生产商的市场份额。主要生产商包括:FISO TechnologiesBrugg KabelSensor HighwayOmnisensAFL GlobalQinetiQ GroupLockheed MartinOSENSA Innovati_预计2026年中国分布式传感器市场规模有多大

07_08 常用组合逻辑电路结构——为IC设计的延时估计铺垫_基4布斯算法代码-程序员宅基地

文章浏览阅读1.1k次,点赞2次,收藏12次。常用组合逻辑电路结构——为IC设计的延时估计铺垫学习目的:估计模块间的delay,确保写的代码的timing 综合能给到多少HZ,以满足需求!_基4布斯算法代码

OpenAI Manager助手(基于SpringBoot和Vue)_chatgpt网页版-程序员宅基地

文章浏览阅读3.3k次,点赞3次,收藏5次。OpenAI Manager助手(基于SpringBoot和Vue)_chatgpt网页版

关于美国计算机奥赛USACO,你想知道的都在这_usaco可以多次提交吗-程序员宅基地

文章浏览阅读2.2k次。USACO自1992年举办,到目前为止已经举办了27届,目的是为了帮助美国信息学国家队选拔IOI的队员,目前逐渐发展为全球热门的线上赛事,成为美国大学申请条件下,含金量相当高的官方竞赛。USACO的比赛成绩可以助力计算机专业留学,越来越多的学生进入了康奈尔,麻省理工,普林斯顿,哈佛和耶鲁等大学,这些同学的共同点是他们都参加了美国计算机科学竞赛(USACO),并且取得过非常好的成绩。适合参赛人群USACO适合国内在读学生有意向申请美国大学的或者想锻炼自己编程能力的同学,高三学生也可以参加12月的第_usaco可以多次提交吗

MySQL存储过程和自定义函数_mysql自定义函数和存储过程-程序员宅基地

文章浏览阅读394次。1.1 存储程序1.2 创建存储过程1.3 创建自定义函数1.3.1 示例1.4 自定义函数和存储过程的区别1.5 变量的使用1.6 定义条件和处理程序1.6.1 定义条件1.6.1.1 示例1.6.2 定义处理程序1.6.2.1 示例1.7 光标的使用1.7.1 声明光标1.7.2 打开光标1.7.3 使用光标1.7.4 关闭光标1.8 流程控制的使用1.8.1 IF语句1.8.2 CASE语句1.8.3 LOOP语句1.8.4 LEAVE语句1.8.5 ITERATE语句1.8.6 REPEAT语句。_mysql自定义函数和存储过程

半导体基础知识与PN结_本征半导体电流为0-程序员宅基地

文章浏览阅读188次。半导体二极管——集成电路最小组成单元。_本征半导体电流为0

随便推点

【Unity3d Shader】水面和岩浆效果_unity 岩浆shader-程序员宅基地

文章浏览阅读2.8k次,点赞3次,收藏18次。游戏水面特效实现方式太多。咱们这边介绍的是一最简单的UV动画(无顶点位移),整个mesh由4个顶点构成。实现了水面效果(左图),不动代码稍微修改下参数和贴图可以实现岩浆效果(右图)。有要思路是1,uv按时间去做正弦波移动2,在1的基础上加个凹凸图混合uv3,在1、2的基础上加个水流方向4,加上对雾效的支持,如没必要请自行删除雾效代码(把包含fog的几行代码删除)S..._unity 岩浆shader

广义线性模型——Logistic回归模型(1)_广义线性回归模型-程序员宅基地

文章浏览阅读5k次。广义线性模型是线性模型的扩展,它通过连接函数建立响应变量的数学期望值与线性组合的预测变量之间的关系。广义线性模型拟合的形式为:其中g(μY)是条件均值的函数(称为连接函数)。另外,你可放松Y为正态分布的假设,改为Y 服从指数分布族中的一种分布即可。设定好连接函数和概率分布后,便可以通过最大似然估计的多次迭代推导出各参数值。在大部分情况下,线性模型就可以通过一系列连续型或类别型预测变量来预测正态分布的响应变量的工作。但是,有时候我们要进行非正态因变量的分析,例如:(1)类别型.._广义线性回归模型

HTML+CSS大作业 环境网页设计与实现(垃圾分类) web前端开发技术 web课程设计 网页规划与设计_垃圾分类网页设计目标怎么写-程序员宅基地

文章浏览阅读69次。环境保护、 保护地球、 校园环保、垃圾分类、绿色家园、等网站的设计与制作。 总结了一些学生网页制作的经验:一般的网页需要融入以下知识点:div+css布局、浮动、定位、高级css、表格、表单及验证、js轮播图、音频 视频 Flash的应用、ul li、下拉导航栏、鼠标划过效果等知识点,网页的风格主题也很全面:如爱好、风景、校园、美食、动漫、游戏、咖啡、音乐、家乡、电影、名人、商城以及个人主页等主题,学生、新手可参考下方页面的布局和设计和HTML源码(有用点赞△) 一套A+的网_垃圾分类网页设计目标怎么写

C# .Net 发布后,把dll全部放在一个文件夹中,让软件目录更整洁_.net dll 全局目录-程序员宅基地

文章浏览阅读614次,点赞7次,收藏11次。之前找到一个修改 exe 中 DLL地址 的方法, 不太好使,虽然能正确启动, 但无法改变 exe 的工作目录,这就影响了.Net 中很多获取 exe 执行目录来拼接的地址 ( 相对路径 ),比如 wwwroot 和 代码中相对目录还有一些复制到目录的普通文件 等等,它们的地址都会指向原来 exe 的目录, 而不是自定义的 “lib” 目录,根本原因就是没有修改 exe 的工作目录这次来搞一个启动程序,把 .net 的所有东西都放在一个文件夹,在文件夹同级的目录制作一个 exe._.net dll 全局目录

BRIEF特征点描述算法_breif description calculation 特征点-程序员宅基地

文章浏览阅读1.5k次。本文为转载,原博客地址:http://blog.csdn.net/hujingshuang/article/details/46910259简介 BRIEF是2010年的一篇名为《BRIEF:Binary Robust Independent Elementary Features》的文章中提出,BRIEF是对已检测到的特征点进行描述,它是一种二进制编码的描述子,摈弃了利用区域灰度..._breif description calculation 特征点

房屋租赁管理系统的设计和实现,SpringBoot计算机毕业设计论文_基于spring boot的房屋租赁系统论文-程序员宅基地

文章浏览阅读4.1k次,点赞21次,收藏79次。本文是《基于SpringBoot的房屋租赁管理系统》的配套原创说明文档,可以给应届毕业生提供格式撰写参考,也可以给开发类似系统的朋友们提供功能业务设计思路。_基于spring boot的房屋租赁系统论文