工作三年 性能调优没有学好 让我和阿里offer直接擦肩而过~_工作中从没用过内存调优-程序员宅基地

技术标签: jvm  面试  经验分享  java  JAVA核心技术  编程语言  

目录

前言

JVM组成解析

栈和栈帧

JVM指令码:

局部变量表

操作数栈

动态链接

方法出口

程序计数器

为什么要设计程序计数器?

堆内存

先介绍一下堆内存的构成:

这里提一下jvm的垃圾回收算法

可以通过java自带的jvisualvm来看一下内存的变化

提一下关于jvm调优

方法区

本地方法栈

最后


前言

面试经常被问 JVM如何调优?这个问题该怎么回答,其实真的没调过。有JVM调优经验的人能回答下怎么调优和调优后的效果?JVM调优对现在的研发和整个系统线上运行来说真的有很大意义,为什么一直问这问题?我是认为JVM调优意义不大,如果把调内存啥的算调优就不谈了。

说jvm的内存模型前先了解一下物理计算机的内存处理。物理计算器上用户磁盘和cpu的交互,由于cpu读写速度速度远远大于磁盘的读写速度速度,所以有了内存(高速缓存区)。但是随着cpu的发展,内存的读写也跟不上cpu的读写速度了,cpu的产商就给每个cpu加入了一个高速缓存,也就是下面的结构。

JVM组成解析

  1. 运行时数据区
    运行时数据区中包括:栈、堆、方法区(元空间)、本地方法栈、程序计数器。详细概念在之后会有记录。
  2. 类装载子系统
    将字节码文件加载进运行时数据区。
  3. 字节码执行引擎

栈和栈帧

在Java中,每开启一个线程,虚拟机就会为其分配一个栈空间和一个程序计数器,栈空间内又包含这个线程所要执行的每个方法对应的栈帧。
先来看一段简单的代码:

public class StackDemo {
    public static void main(String[] args) {
            StackDemo sd = new StackDemo();
            int number = sd.compute();
            System.out.println("计算之后结果是:"+number);
        }

        public int compute(){
            int a = 1;
            int b = 2;
            int c = (a + b) * 10;
            return c;
        }
}

JVM指令码:

对生成的class文件进行反编译,生成对应的JVM指令码:

使用javap -c StackDemo.class命令,表示将这个class文件反编译并将反编译,并直接输出指令码到控制台。

public class com.jdc.demo.StackDemo {
  public com.jdc.demo.StackDemo();
    Code:
       0: aload_0
       1: invokespecial #1                  // Method java/lang/Object."<init>":()V
       4: return

  public static void main(java.lang.String[]);
    Code:
       0: new           #2                  // class com/jdc/demo/StackDemo
       3: dup
       4: invokespecial #3                  // Method "<init>":()V
       7: astore_1
       8: aload_1
       9: invokevirtual #4                  // Method compute:()I
      12: istore_2
      13: getstatic     #5                  // Field java/lang/System.out:Ljava/io/PrintStream;
      16: new           #6                  // class java/lang/StringBuilder
      19: dup
      20: invokespecial #7                  // Method java/lang/StringBuilder."<init>":()V
      23: ldc           #8                  // String 计算之后结果是:
      25: invokevirtual #9                  // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
      28: iload_2
      29: invokevirtual #10                 // Method java/lang/StringBuilder.append:(I)Ljava/lang/StringBuilder;
      32: invokevirtual #11                 // Method java/lang/StringBuilder.toString:()Ljava/lang/String;
      35: invokevirtual #12                 // Method java/io/PrintStream.println:(Ljava/lang/String;)V
      38: return

  public int compute();
    Code:
       0: iconst_1 //将int类型的常量1压入到操作数栈中。
       1: istore_1 //将int类型值 存入到局部变量1 这里指的是a
       2: iconst_2 //将int类型的常量2压入到操作数栈中。
       3: istore_2 //将int类型值 存入到局部变量2 这里指的是b
       4: iload_1 //从局部变量1中装载int类型值入栈。
       5: iload_2 //从局部变量2中装载int类型值入栈。
       6: iadd //将栈顶的两个int类型数相加,结果重新入栈。
       7: bipush        10 //往栈中压入10
       9: imul //将栈顶的两个int类型数相乘,结果重新入栈。
      10: istore_3 //将int类型值 存入到局部变量3 这里指的是c
      11: iload_3 //从局部变量3(c)中装载int类型值入栈。(是为了return)
      12: ireturn //返回
}

不难看出这一段中就是我们刚才写的简单的StackDemo类,可以通过查Oracle官方提供的指令码解析。网上也有很多。这里我已将compute()方法用到的指令意思标明到注解中。
看一下compute()方法的注释中的执行过程。

再来结合图看看执行过程:

    栈的数据结构:FILO
   上述图中main线程中有两个方法,main()方法和一个负责计算数字的compute()方法,具体执行过程如下:
  1. main线程启动之后,先执行main()方法,执行main()方法的时候给它在栈空间中开辟出一块新的空间(栈帧)。
  2. main()方法内部的局部变量的创建就是在这个栈帧中存放。但是要注意的是这里的局部变量是对象的话,它的值并不是存放在局部变量表中,而是在堆中存放具体,这里指向堆中对应的地址,之前第一节的图一中可以看出,栈中有很多指向堆的对象引用。
  3. 等main()方法执行到调用compute()方法的那一步,线程调起compute()方法这时候compute()方法进栈,同样为它分配一块栈帧存放它自己的局部变量。
  4. 等这个compute()方法执行完成自己的逻辑,就退出整个栈compute()方法出栈
  5. 这个时候返回并继续执行main()方法中接下来的操作。

局部变量表

如上节图中以及执行过程中可以看出,局部变量表和操作数栈配合完成对数据处理的操作。
比如int a=1,
在指令码中分为三步:

  • 把这个1就是先放入操作数栈,
  • 同时给a这个变量在局部变量表中申请了一小块地方来存放。
  • 然后将1从操作数出栈,并赋值给局部变量表中的a,完成赋值操作。

操作数栈

如栈那一节图中以及执行过程中可以看出,局部变量表和操作数栈配合完成对数据处理的操作。
比如int a=1,
在指令码中分为三步:

  • 把这个1就是先放入操作数栈,
  • 同时给a这个变量在局部变量表中申请了一小块地方来存放。
  • 然后将1从操作数出栈,并赋值给局部变量表中的a,完成赋值操作。

动态链接

动态链接:方法是存放在方法区中的,方法加载到方法区的对应的入口内存地址(其他方法调用的时候)通过动态链接就可以很方便的知道对应方法的代码在方法区内的地址。

方法出口

compute()方法执行完之后返回到main()方法中,这个时候继续从main()方法中调用compute()方法的下一句开始执行,而不是重新从main()方法的第一句开始执行,这个就是方法出口。

程序计数器

程序计数器,很简单但是又很重要的一个设计。

每个线程开启都会有一个程序计数器,如上和栈帧章节中生成的jvm指令码,最左边有数字0 1 2…,这个值就是给程序计数器的。

为什么要设计程序计数器?

程序计数器作用:因为Java是多线程执行,所以就存在线程优先级高低之分,如果在这个线程执行过程中,有一个优先级更高的线程过来抢占CPU资源,等优先级高的那个线程执行完成之后,再将CPU资源还给当前线程,当前线程就是通过程序计数器才能知道目前它执行到哪一步。

堆内存

堆内存是最重要也是最复杂的一部分,这里面不仅要负责创建新的对象,还要负责gc,判断一个系统性能的重要指标之一就是程序员对堆内存的管理。因为大部分的JVM调优都会提到堆内存。

先介绍一下堆内存的构成:

1.创建对象都会放在年轻代的Eden区,当Eden区对象放满之后,这时候虚拟机会进行gc,但是这里的gc并不是full gc,而是minor gc,就是只清理年轻代的对象,而不管老年区的对象,这时候就要提一下GCRoots根节点(线程栈中的本地变量,静态变量,本地方法栈的变量等),当需要进行gc之前,jvm会根据Eden中的每一个GCRoots根节点去找它底下的引用,一层一层往下找,直到找到最后一个对象没有其他引用,这时候虚拟机会将这整个过程中的所有对象看做是非垃圾对象。

2.在gc的时候会将这些非垃圾对象赋值到S1区,然后将Eden区中剩余的没有引用的垃圾对象清理,清理完成之后,Eden区空出来了,有用的对象现在都存放在S1中,然后将S1和S2替换(之前是Eden和S1配合,目下一次的gc就是Eden和S2配合)。第二次进行gc的时候,会对Eden区和刚才的S1区进行和第一次gc同样的操作…每次gc之后,活下来的对象年龄会+1,进行一定次数的gc之后,也就是说这个幸存者对象年龄达到足够大,这时候虚拟机会将它放入老年代。------->使用java自带工具查看jvisualvm

3.当老年区装满之后,jvm会进行一次非常耗时的full gc,这个时候程序整个是没办法继续进行的,当full gc完了之后,如果顺利,程序将继续执行,只是性能上有一些损耗,因为常说的jvm调优说白了就是减少gc次数和减少每次gc时间(可以设置初始堆大小。。。等等),如果目前老年代中的对象还都是非垃圾对象,那么就会出现OOM内存溢出。

这里提一下jvm的垃圾回收算法

垃圾回收算法有四种,一一介绍一下:
1、标记-清除:最基础的也是最简单,最容易实现的一种算法,分为两阶段,第一阶段标记已经没有引用的对象(垃圾),第二阶段清除。
优点:方便。
缺点:产生内存碎片,因为你并不知道一块儿内存上边哪里的是垃圾,哪里的是非垃圾,所以清理完之后会存在很多内存碎片。

2、复制算法:是目前新生代还在使用的方法,但是现在的使用时经过优化的(8:1:1)。它的实现是将一块内存分成大小相同的两块,每次使用一块,当这块内存满了的时候,将它上边还存活的对象移动到另一块内存上。。。循环使用。
缺点:内存使用不充分,花了100块钱,却只能享受50块钱的服务。

3、标记-整理:这种算法和第一种标记清除差不多,都是第一阶段先对垃圾对象进行标记,但是标记整理的第二阶段不是立即清理,而是先将存活的对象向一边移动,然后最后清理掉垃圾对象那边的内存。

4、分代收集:目前jvm使用最多,大概就是对新生代使用复制算法,而对老年区采用的是标记整理算法。因为新生代时时刻刻都在产生对象,所以非常容易满,这也就以为着它需要经常进行清理,所以采用复制算法,但它的复制算法不是讲内存分成1:1的两块,而是默认分为8:1:1

可以通过java自带的jvisualvm来看一下内存的变化

这里只附上一张图,因为它上边的监控都是动态变化的,而且理论上边也已经记录清除,有兴趣的小伙伴可以自己去试试。
代码:

public class Test{

    public static void main(String[] args) throws Exception {
        List<Test> list = new ArrayList<Test>();
        //死循环,让一直创建对象,并且都是有引用对象
        while (true){
            list.add(new Test());
            Thread.sleep(10);
        }
    }
}

win+R—>cmd—>jvisualvm
上图:

提一下关于jvm调优

STW:stop the word 意思就是在gc的时候,程序线程是暂停的,这个时候就看垃圾多不多了,如果多的话,gc要执行的时间就长,这个时候用户的体验就会非常差。
jvm调优:减少STW次数和时间,但是STW是必须得要的,这是java的设计机制。和程序计数器一样,非常巧妙。

原因:可以从本文第一张图看到,拿栈和堆来举例子,栈中的方法有关于对象的引用,而这个引用正是指向堆中的,当gc的时候是通过这个GCRoots根来一步一步找到堆,然后再从堆中找下一个引用,比如一个项目中,对象是在不断创建(电商项目中搞活动大促销抢东西的前几秒),这中时候,一秒钟创建的对象可能是几十MB的,再加上关联的订单对象创建、购物车、等等一系列。如果这个时候我gc一次,gc是需要时间的,它的时间和STW时间一样,但是如果没有STW,我在这次gc开始前,还有成千上万个对象正在创建的过程中(这个时候它们有引用,比如创建的订单对象依赖购物车对象),这个时候gc完成了,会将线程中栈中的方法栈帧释放掉,释放掉栈帧之后,自然就没有方法的局部变量表了,又因为我开始就是通过局部变量表中的某个对象作为GCRoots根往下找引用的,如果没有STW时间,在gc执行完之后我这个对象本来不是垃圾,但是它现在的GCRoots根的没有了,自然没有了引用,这个时候我这个对象就成为了垃圾,还没用就成了垃圾,那程序肯定就会GG。。。

方法区

主要存放的是常量、静态变量以及类信息。

本地方法栈

执行非java本地代码(native关键字)的方法。

最后

感谢你看到这里,文章有什么不足还请指正,觉得文章对你有帮助的话记得给我点个赞,每天都会分享java相关技术文章或行业资讯,欢迎大家关注和转发文章!

文章到此就结束了!

最后来自小编的福利

以下是小编整理的一份大厂真题的面试资料,以及2020最新Java核心技术整理的资料集锦,需要领取的小伙伴可以 点我 免费领取 ,编程的世界永远向所有热爱编程的人开放,这是一个自由,平等,共享的世界,我始终是这样坚信的。

部分资料图片:

喜欢小编的分享可以点赞关注哦,小编持续为你分享最新文章 和 福利领取哦

 

 

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/sqy0809/article/details/110337682

智能推荐

2022黑龙江最新建筑八大员(材料员)模拟考试试题及答案_料账的试题-程序员宅基地

文章浏览阅读529次。百分百题库提供建筑八大员(材料员)考试试题、建筑八大员(材料员)考试预测题、建筑八大员(材料员)考试真题、建筑八大员(材料员)证考试题库等,提供在线做题刷题,在线模拟考试,助你考试轻松过关。310项目经理部应编制机械设备使用计划并报()审批。A监理单位B企业C建设单位D租赁单位答案:B311对技术开发、新技术和新工艺应用等情况进行的分析和评价属于()。A人力资源管理考核B材料管理考核C机械设备管理考核D技术管理考核答案:D312建筑垃圾和渣土._料账的试题

chatgpt赋能python:Python自动打开浏览器的技巧-程序员宅基地

文章浏览阅读614次。本文由chatgpt生成,文章没有在chatgpt生成的基础上进行任何的修改。以上只是chatgpt能力的冰山一角。作为通用的Aigc大模型,只是展现它原本的实力。对于颠覆工作方式的ChatGPT,应该选择拥抱而不是抗拒,未来属于“会用”AI的人。AI职场汇报智能办公文案写作效率提升教程 专注于AI+职场+办公方向。下图是课程的整体大纲下图是AI职场汇报智能办公文案写作效率提升教程中用到的ai工具。_python自动打开浏览器

Linux中安装JDK-RPM_linux 安装jdk rpm-程序员宅基地

文章浏览阅读545次。Linux中安装JDK-RPM方式_linux 安装jdk rpm

net高校志愿者管理系统-73371,计算机毕业设计(上万套实战教程,赠送源码)-程序员宅基地

文章浏览阅读25次。免费领取项目源码,请关注赞收藏并私信博主,谢谢-高校志愿者管理系统主要功能模块包括页、个人资料(个人信息。修改密码)、公共管理(轮播图、系统公告)、用户管理(管理员、志愿用户)、信息管理(志愿资讯、资讯分类)、活动分类、志愿活动、报名信息、活动心得、留言反馈,采取面对对象的开发模式进行软件的开发和硬体的架设,能很好的满足实际使用的需求,完善了对应的软体架设以及程序编码的工作,采取SQL Server 作为后台数据的主要存储单元,采用Asp.Net技术进行业务系统的编码及其开发,实现了本系统的全部功能。

小米宣布用鸿蒙了吗,小米OV对于是否采用鸿蒙保持沉默,原因是中国制造需要它们...-程序员宅基地

文章浏览阅读122次。原标题:小米OV对于是否采用鸿蒙保持沉默,原因是中国制造需要它们目前华为已开始对鸿蒙系统大规模宣传,不过中国手机四强中的另外三家小米、OPPO、vivo对于是否采用鸿蒙系统保持沉默,甚至OPPO还因此而闹出了一些风波,对此柏铭科技认为这是因为中国制造当下需要小米OV几家继续将手机出口至海外市场。 2020年中国制造支持中国经济渡过了艰难的一年,这一年中国进出口贸易额保持稳步增长的势头,成为全球唯一..._小米宣布用鸿蒙系统

Kafka Eagle_kafka eagle git-程序员宅基地

文章浏览阅读1.3k次。1.Kafka Eagle实现kafka消息监控的代码细节是什么?2.Kafka owner的组成规则是什么?3.怎样使用SQL进行kafka数据预览?4.Kafka Eagle是否支持多集群监控?1.概述在《Kafka 消息监控 - Kafka Eagle》一文中,简单的介绍了 Kafka Eagle这款监控工具的作用,截图预览,以及使用详情。今天_kafka eagle git

随便推点

Eva.js是什么(互动小游戏开发)-程序员宅基地

文章浏览阅读1.1k次,点赞29次,收藏19次。Eva.js 是一个专注于开发互动游戏项目的前端游戏引擎。:Eva.js 提供开箱即用的游戏组件供开发人员立即使用。是的,它简单而优雅!:Eva.js 由高效的运行时和渲染管道 (Pixi.JS) 提供支持,这使得释放设备的全部潜力成为可能。:得益于 ECS(实体-组件-系统)架构,你可以通过高度可定制的 API 扩展您的需求。唯一的限制是你的想象力!_eva.js

OC学习笔记-Objective-C概述和特点_objective-c特点及应用领域-程序员宅基地

文章浏览阅读1k次。Objective-C概述Objective-C是一种面向对象的计算机语言,1980年代初布莱德.考斯特在其公司Stepstone发明Objective-C,该语言是基于SmallTalk-80。1988年NeXT公司发布了OC,他的开发环境和类库叫NEXTSTEP, 1994年NExt与Sun公司发布了标准的NEXTSTEP系统,取名openStep。1996_objective-c特点及应用领域

STM32学习笔记6:TIM基本介绍_stm32 tim寄存器详解-程序员宅基地

文章浏览阅读955次,点赞20次,收藏16次。TIM(Timer)定时器定时器可以对输入的时钟进行计数,并在计数值达到设定值时触发中断16位计数器、预分频器、自动重装寄存器的时基单元,在 72MHz 计数时钟下可以实现最大 59.65s 的定时,59.65s65536×65536×172MHz59.65s65536×65536×721​MHz不仅具备基本的定时中断功能,而且还包含内外时钟源选择、输入捕获、输出比较、编码器接口、主从触发模式等多种功能。_stm32 tim寄存器详解

前端基础语言HTML、CSS 和 JavaScript 学习指南_艾编程学习资料-程序员宅基地

文章浏览阅读1.5k次。对于任何有兴趣学习前端 Web 开发的人来说,了解 HTML、CSS 和JavaScript 之间的区别至关重要。这三种前端语言都是您访问过的每个网站的用户界面构建块。而且,虽然每种语言都有不同的功能重点,但它们都可以共同创建令人兴奋的交互式网站,让用户保持参与。因此,您会发现学习所有三种语言都很重要。如果您有兴趣从事前端开发工作,可以通过多种方式学习这些语言——在艾编程就可以参与到学习当中来。在本文中,我们将回顾每种语言的特征、它们如何协同工作以及您可以在哪里学习它们。HTML vs C._艾编程学习资料

三维重构(10):PCL点云配准_局部点云与全局点云配准-程序员宅基地

文章浏览阅读2.8k次。点云配准主要针对点云的:不完整、旋转错位、平移错位。因此要得到完整点云就需要对局部点云进行配准。为了得到被测物体的完整数据模型,需要确定一个合适的坐标系变换,将从各个视角得到的点集合并到一个统一的坐标系下形成一个完整的数据点云,然后就可以方便地进行可视化,这就是点云数据的配准。点云配准技术通过计算机技术和统计学规律,通过计算机计算两个点云之间的错位,也就是把在不同的坐标系下的得到的点云进行坐标变..._局部点云与全局点云配准

python零基础学习书-Python零基础到进阶必读的书藉:Python学习手册pdf免费下载-程序员宅基地

文章浏览阅读273次。提取码:0oorGoogle和YouTube由于Python的高可适应性、易于维护以及适合于快速开发而采用它。如果你想要编写高质量、高效的并且易于与其他语言和工具集成的代码,《Python学习手册:第4 版》将帮助你使用Python快速实现这一点,不管你是编程新手还是Python初学者。本书是易于掌握和自学的教程,根据作者Python专家Mark Lutz的著名培训课程编写而成。《Python学习..._零基础学pythonpdf电子书

推荐文章

热门文章

相关标签